Optimal. Leaf size=29 \[ 5 \left (-2+e^4 \left (2+5 e^3 x+25 \left (x-\frac {x}{\log (x)}\right )^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 39, normalized size of antiderivative = 1.34, number of steps used = 13, number of rules used = 6, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {6741, 12, 6742, 2306, 2309, 2178} \begin {gather*} 125 e^4 x^2+\frac {125 e^4 x^2}{\log ^2(x)}-\frac {250 e^4 x^2}{\log (x)}+25 e^7 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 e^4 \left (-10 x+20 x \log (x)-20 x \log ^2(x)+e^3 \log ^3(x)+10 x \log ^3(x)\right )}{\log ^3(x)} \, dx\\ &=\left (25 e^4\right ) \int \frac {-10 x+20 x \log (x)-20 x \log ^2(x)+e^3 \log ^3(x)+10 x \log ^3(x)}{\log ^3(x)} \, dx\\ &=\left (25 e^4\right ) \int \left (e^3+10 x-\frac {10 x}{\log ^3(x)}+\frac {20 x}{\log ^2(x)}-\frac {20 x}{\log (x)}\right ) \, dx\\ &=25 e^7 x+125 e^4 x^2-\left (250 e^4\right ) \int \frac {x}{\log ^3(x)} \, dx+\left (500 e^4\right ) \int \frac {x}{\log ^2(x)} \, dx-\left (500 e^4\right ) \int \frac {x}{\log (x)} \, dx\\ &=25 e^7 x+125 e^4 x^2+\frac {125 e^4 x^2}{\log ^2(x)}-\frac {500 e^4 x^2}{\log (x)}-\left (250 e^4\right ) \int \frac {x}{\log ^2(x)} \, dx-\left (500 e^4\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )+\left (1000 e^4\right ) \int \frac {x}{\log (x)} \, dx\\ &=25 e^7 x+125 e^4 x^2-500 e^4 \text {Ei}(2 \log (x))+\frac {125 e^4 x^2}{\log ^2(x)}-\frac {250 e^4 x^2}{\log (x)}-\left (500 e^4\right ) \int \frac {x}{\log (x)} \, dx+\left (1000 e^4\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=25 e^7 x+125 e^4 x^2+500 e^4 \text {Ei}(2 \log (x))+\frac {125 e^4 x^2}{\log ^2(x)}-\frac {250 e^4 x^2}{\log (x)}-\left (500 e^4\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=25 e^7 x+125 e^4 x^2+\frac {125 e^4 x^2}{\log ^2(x)}-\frac {250 e^4 x^2}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 39, normalized size = 1.34 \begin {gather*} 25 e^7 x+125 e^4 x^2+\frac {125 e^4 x^2}{\log ^2(x)}-\frac {250 e^4 x^2}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 41, normalized size = 1.41 \begin {gather*} -\frac {25 \, {\left (10 \, x^{2} e^{4} \log \relax (x) - 5 \, x^{2} e^{4} - {\left (5 \, x^{2} e^{4} + x e^{7}\right )} \log \relax (x)^{2}\right )}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 35, normalized size = 1.21 \begin {gather*} 125 \, x^{2} e^{4} + 25 \, x e^{7} - \frac {250 \, x^{2} e^{4}}{\log \relax (x)} + \frac {125 \, x^{2} e^{4}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 30, normalized size = 1.03
method | result | size |
risch | \(25 \,{\mathrm e}^{4} x \left ({\mathrm e}^{3}+5 x \right )-\frac {125 x^{2} {\mathrm e}^{4} \left (2 \ln \relax (x )-1\right )}{\ln \relax (x )^{2}}\) | \(30\) |
norman | \(\frac {125 x^{2} {\mathrm e}^{4}-250 x^{2} {\mathrm e}^{4} \ln \relax (x )+125 x^{2} {\mathrm e}^{4} \ln \relax (x )^{2}+25 \,{\mathrm e}^{3} {\mathrm e}^{4} x \ln \relax (x )^{2}}{\ln \relax (x )^{2}}\) | \(45\) |
default | \(25 \,{\mathrm e}^{3} {\mathrm e}^{4} x +125 x^{2} {\mathrm e}^{4}+500 \,{\mathrm e}^{4} \expIntegralEi \left (1, -2 \ln \relax (x )\right )+500 \,{\mathrm e}^{4} \left (-\frac {x^{2}}{\ln \relax (x )}-2 \expIntegralEi \left (1, -2 \ln \relax (x )\right )\right )-250 \,{\mathrm e}^{4} \left (-\frac {x^{2}}{2 \ln \relax (x )^{2}}-\frac {x^{2}}{\ln \relax (x )}-2 \expIntegralEi \left (1, -2 \ln \relax (x )\right )\right )\) | \(79\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 42, normalized size = 1.45 \begin {gather*} 125 \, x^{2} e^{4} + 25 \, x e^{7} - 500 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) e^{4} + 1000 \, e^{4} \Gamma \left (-1, -2 \, \log \relax (x)\right ) + 1000 \, e^{4} \Gamma \left (-2, -2 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.30, size = 34, normalized size = 1.17 \begin {gather*} \frac {125\,x^2\,{\mathrm {e}}^4-250\,x^2\,{\mathrm {e}}^4\,\ln \relax (x)}{{\ln \relax (x)}^2}+25\,x\,{\mathrm {e}}^4\,\left (5\,x+{\mathrm {e}}^3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 39, normalized size = 1.34 \begin {gather*} 125 x^{2} e^{4} + 25 x e^{7} + \frac {- 250 x^{2} e^{4} \log {\relax (x )} + 125 x^{2} e^{4}}{\log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________