Optimal. Leaf size=22 \[ x \log \left (\frac {2}{-9+e^{x^2}}\right )+\log \left (4+x+x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-9-18 x+e^{x^2} \left (1+2 x-8 x^2-2 x^3-2 x^4\right )+\left (-36-9 x-9 x^2+e^{x^2} \left (4+x+x^2\right )\right ) \log \left (\frac {2}{-9+e^{x^2}}\right )}{-36-9 x-9 x^2+e^{x^2} \left (4+x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9+18 x-e^{x^2} \left (1+2 x-8 x^2-2 x^3-2 x^4\right )-\left (-36-9 x-9 x^2+e^{x^2} \left (4+x+x^2\right )\right ) \log \left (\frac {2}{-9+e^{x^2}}\right )}{\left (9-e^{x^2}\right ) \left (4+x+x^2\right )} \, dx\\ &=\int \left (-\frac {18 x^2}{-9+e^{x^2}}+\frac {1+2 x-8 x^2-2 x^3-2 x^4+4 \log \left (\frac {2}{-9+e^{x^2}}\right )+x \log \left (\frac {2}{-9+e^{x^2}}\right )+x^2 \log \left (\frac {2}{-9+e^{x^2}}\right )}{4+x+x^2}\right ) \, dx\\ &=-\left (18 \int \frac {x^2}{-9+e^{x^2}} \, dx\right )+\int \frac {1+2 x-8 x^2-2 x^3-2 x^4+4 \log \left (\frac {2}{-9+e^{x^2}}\right )+x \log \left (\frac {2}{-9+e^{x^2}}\right )+x^2 \log \left (\frac {2}{-9+e^{x^2}}\right )}{4+x+x^2} \, dx\\ &=-\left (18 \int \frac {x^2}{-9+e^{x^2}} \, dx\right )+\int \frac {1+2 x-8 x^2-2 x^3-2 x^4+\left (4+x+x^2\right ) \log \left (\frac {2}{-9+e^{x^2}}\right )}{4+x+x^2} \, dx\\ &=-\left (18 \int \frac {x^2}{-9+e^{x^2}} \, dx\right )+\int \left (\frac {1+2 x-8 x^2-2 x^3-2 x^4}{4+x+x^2}+\log \left (\frac {2}{-9+e^{x^2}}\right )\right ) \, dx\\ &=-\left (18 \int \frac {x^2}{-9+e^{x^2}} \, dx\right )+\int \frac {1+2 x-8 x^2-2 x^3-2 x^4}{4+x+x^2} \, dx+\int \log \left (\frac {2}{-9+e^{x^2}}\right ) \, dx\\ &=x \log \left (-\frac {2}{9-e^{x^2}}\right )-18 \int \frac {x^2}{-9+e^{x^2}} \, dx-\int -\frac {2 e^{x^2} x^2}{-9+e^{x^2}} \, dx+\int \left (-2 x^2+\frac {1+2 x}{4+x+x^2}\right ) \, dx\\ &=-\frac {2 x^3}{3}+x \log \left (-\frac {2}{9-e^{x^2}}\right )+2 \int \frac {e^{x^2} x^2}{-9+e^{x^2}} \, dx-18 \int \frac {x^2}{-9+e^{x^2}} \, dx+\int \frac {1+2 x}{4+x+x^2} \, dx\\ &=-\frac {2 x^3}{3}+x \log \left (-\frac {2}{9-e^{x^2}}\right )+\log \left (4+x+x^2\right )+2 \int \frac {e^{x^2} x^2}{-9+e^{x^2}} \, dx-18 \int \frac {x^2}{-9+e^{x^2}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 22, normalized size = 1.00 \begin {gather*} x \log \left (\frac {2}{-9+e^{x^2}}\right )+\log \left (4+x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 21, normalized size = 0.95 \begin {gather*} x \log \left (\frac {2}{e^{\left (x^{2}\right )} - 9}\right ) + \log \left (x^{2} + x + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 21, normalized size = 0.95 \begin {gather*} x \log \left (\frac {2}{e^{\left (x^{2}\right )} - 9}\right ) + \log \left (x^{2} + x + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 22, normalized size = 1.00
method | result | size |
norman | \(\ln \left (\frac {2}{{\mathrm e}^{x^{2}}-9}\right ) x +\ln \left (x^{2}+x +4\right )\) | \(22\) |
risch | \(-\ln \left ({\mathrm e}^{x^{2}}-9\right ) x +x \ln \relax (2)+\ln \left (x^{2}+x +4\right )\) | \(23\) |
default | \(x \left (\ln \left (\frac {2}{{\mathrm e}^{x^{2}}-9}\right )+\ln \left ({\mathrm e}^{x^{2}}-9\right )\right )-\ln \left ({\mathrm e}^{x^{2}}-9\right ) x +\ln \left (x^{2}+x +4\right )\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 22, normalized size = 1.00 \begin {gather*} x \log \relax (2) - x \log \left (e^{\left (x^{2}\right )} - 9\right ) + \log \left (x^{2} + x + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.50, size = 21, normalized size = 0.95 \begin {gather*} \ln \left (x^2+x+4\right )+x\,\ln \left (\frac {2}{{\mathrm {e}}^{x^2}-9}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 19, normalized size = 0.86 \begin {gather*} x \log {\left (\frac {2}{e^{x^{2}} - 9} \right )} + \log {\left (x^{2} + x + 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________