Optimal. Leaf size=17 \[ 4 x \log \left (-1+e^{\left (-1+e^{e^x}\right ) x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 3.51, antiderivative size = 20, normalized size of antiderivative = 1.18, number of steps used = 15, number of rules used = 4, integrand size = 89, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {6742, 2548, 6688, 14} \begin {gather*} 4 x \log \left (e^{-\left (\left (1-e^{e^x}\right ) x\right )}-1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2548
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {4 e^x x \left (-1+e^{e^x}+e^{e^x+x} x\right )}{e^x-e^{e^{e^x} x}}+4 \left (-x+e^{e^x} x+e^{e^x+x} x^2+\log \left (-1+e^{\left (-1+e^{e^x}\right ) x}\right )\right )\right ) \, dx\\ &=-\left (4 \int \frac {e^x x \left (-1+e^{e^x}+e^{e^x+x} x\right )}{e^x-e^{e^{e^x} x}} \, dx\right )+4 \int \left (-x+e^{e^x} x+e^{e^x+x} x^2+\log \left (-1+e^{\left (-1+e^{e^x}\right ) x}\right )\right ) \, dx\\ &=-2 x^2+4 \int e^{e^x} x \, dx+4 \int e^{e^x+x} x^2 \, dx-4 \int \left (-\frac {e^x x}{e^x-e^{e^{e^x} x}}+\frac {e^{e^x+x} x}{e^x-e^{e^{e^x} x}}+\frac {e^{e^x+2 x} x^2}{e^x-e^{e^{e^x} x}}\right ) \, dx+4 \int \log \left (-1+e^{\left (-1+e^{e^x}\right ) x}\right ) \, dx\\ &=-2 x^2+4 x \log \left (-1+e^{-\left (\left (1-e^{e^x}\right ) x\right )}\right )+4 \int e^{e^x} x \, dx+4 \int \frac {e^x x}{e^x-e^{e^{e^x} x}} \, dx-4 \int \frac {e^{e^x+x} x}{e^x-e^{e^{e^x} x}} \, dx+4 \int e^{e^x+x} x^2 \, dx-4 \int \frac {e^{e^x+2 x} x^2}{e^x-e^{e^{e^x} x}} \, dx-4 \int \frac {e^{-x+e^{e^x} x} x \left (1-e^{e^x}-e^{e^x+x} x\right )}{1-e^{\left (-1+e^{e^x}\right ) x}} \, dx\\ &=-2 x^2+4 x \log \left (-1+e^{-\left (\left (1-e^{e^x}\right ) x\right )}\right )+4 \int e^{e^x} x \, dx+4 \int \frac {e^x x}{e^x-e^{e^{e^x} x}} \, dx-4 \int \frac {e^{e^x+x} x}{e^x-e^{e^{e^x} x}} \, dx+4 \int e^{e^x+x} x^2 \, dx-4 \int \frac {e^{e^x+2 x} x^2}{e^x-e^{e^{e^x} x}} \, dx-4 \int \frac {x \left (-1+e^{e^x}+e^{e^x+x} x\right )}{1-e^{x-e^{e^x} x}} \, dx\\ &=-2 x^2+4 x \log \left (-1+e^{-\left (\left (1-e^{e^x}\right ) x\right )}\right )+4 \int e^{e^x} x \, dx+4 \int \frac {e^x x}{e^x-e^{e^{e^x} x}} \, dx-4 \int \frac {e^{e^x+x} x}{e^x-e^{e^{e^x} x}} \, dx+4 \int e^{e^x+x} x^2 \, dx-4 \int \frac {e^{e^x+2 x} x^2}{e^x-e^{e^{e^x} x}} \, dx-4 \int \left (x \left (-1+e^{e^x}+e^{e^x+x} x\right )-\frac {e^x x \left (-1+e^{e^x}+e^{e^x+x} x\right )}{e^x-e^{e^{e^x} x}}\right ) \, dx\\ &=-2 x^2+4 x \log \left (-1+e^{-\left (\left (1-e^{e^x}\right ) x\right )}\right )+4 \int e^{e^x} x \, dx+4 \int \frac {e^x x}{e^x-e^{e^{e^x} x}} \, dx-4 \int \frac {e^{e^x+x} x}{e^x-e^{e^{e^x} x}} \, dx+4 \int e^{e^x+x} x^2 \, dx-4 \int \frac {e^{e^x+2 x} x^2}{e^x-e^{e^{e^x} x}} \, dx-4 \int x \left (-1+e^{e^x}+e^{e^x+x} x\right ) \, dx+4 \int \frac {e^x x \left (-1+e^{e^x}+e^{e^x+x} x\right )}{e^x-e^{e^{e^x} x}} \, dx\\ &=-2 x^2+4 x \log \left (-1+e^{-\left (\left (1-e^{e^x}\right ) x\right )}\right )+4 \int e^{e^x} x \, dx+4 \int \frac {e^x x}{e^x-e^{e^{e^x} x}} \, dx-4 \int \frac {e^{e^x+x} x}{e^x-e^{e^{e^x} x}} \, dx+4 \int e^{e^x+x} x^2 \, dx-4 \int \frac {e^{e^x+2 x} x^2}{e^x-e^{e^{e^x} x}} \, dx-4 \int \left (\left (-1+e^{e^x}\right ) x+e^{e^x+x} x^2\right ) \, dx+4 \int \left (-\frac {e^x x}{e^x-e^{e^{e^x} x}}+\frac {e^{e^x+x} x}{e^x-e^{e^{e^x} x}}+\frac {e^{e^x+2 x} x^2}{e^x-e^{e^{e^x} x}}\right ) \, dx\\ &=-2 x^2+4 x \log \left (-1+e^{-\left (\left (1-e^{e^x}\right ) x\right )}\right )+4 \int e^{e^x} x \, dx-4 \int \left (-1+e^{e^x}\right ) x \, dx\\ &=-2 x^2+4 x \log \left (-1+e^{-\left (\left (1-e^{e^x}\right ) x\right )}\right )+4 \int e^{e^x} x \, dx-4 \int \left (-x+e^{e^x} x\right ) \, dx\\ &=4 x \log \left (-1+e^{-\left (\left (1-e^{e^x}\right ) x\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.56, size = 17, normalized size = 1.00 \begin {gather*} 4 x \log \left (-1+e^{\left (-1+e^{e^x}\right ) x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 16, normalized size = 0.94 \begin {gather*} 4 \, x \log \left (e^{\left (x e^{\left (e^{x}\right )} - x\right )} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 16, normalized size = 0.94 \begin {gather*} 4 \, x \log \left (e^{\left (x e^{\left (e^{x}\right )} - x\right )} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 15, normalized size = 0.88
method | result | size |
risch | \(4 \ln \left (-1+{\mathrm e}^{x \left ({\mathrm e}^{{\mathrm e}^{x}}-1\right )}\right ) x\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 21, normalized size = 1.24 \begin {gather*} -4 \, x^{2} + 4 \, x \log \left (e^{\left (x e^{\left (e^{x}\right )}\right )} - e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.61, size = 16, normalized size = 0.94 \begin {gather*} 4\,x\,\ln \left ({\mathrm {e}}^{x\,{\mathrm {e}}^{{\mathrm {e}}^x}-x}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 6.71, size = 15, normalized size = 0.88 \begin {gather*} 4 x \log {\left (e^{x e^{e^{x}} - x} - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________