Optimal. Leaf size=28 \[ x (1+x) \log \left (\frac {4+x+\frac {x^2 \log (x)}{25 \log (5+x)}}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 7.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-x^3-x^4\right ) \log (x)+\left (5 x^2+6 x^3+x^4+\left (5 x^2+6 x^3+x^4\right ) \log (x)\right ) \log (5+x)+\left (-500-600 x-100 x^2\right ) \log ^2(5+x)+\left (\left (5 x^2+11 x^3+2 x^4\right ) \log (x) \log (5+x)+\left (500+1225 x+475 x^2+50 x^3\right ) \log ^2(5+x)\right ) \log \left (\frac {x^2 \log (x)+(100+25 x) \log (5+x)}{25 x \log (5+x)}\right )}{\left (5 x^2+x^3\right ) \log (x) \log (5+x)+\left (500+225 x+25 x^2\right ) \log ^2(5+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x^3 (1+x) \log (x)+x^2 \left (5+6 x+x^2\right ) (1+\log (x)) \log (5+x)-100 \left (5+6 x+x^2\right ) \log ^2(5+x)+\left (5+11 x+2 x^2\right ) \log (5+x) \left (x^2 \log (x)+25 (4+x) \log (5+x)\right ) \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right )}{(5+x) \log (5+x) \left (x^2 \log (x)+25 (4+x) \log (5+x)\right )} \, dx\\ &=\int \left (\frac {(1+x) \left (-x^3 \log (x)+5 x^2 \log (5+x)+x^3 \log (5+x)+5 x^2 \log (x) \log (5+x)+x^3 \log (x) \log (5+x)-500 \log ^2(5+x)-100 x \log ^2(5+x)\right )}{(5+x) \log (5+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )}+(1+2 x) \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right )\right ) \, dx\\ &=\int \frac {(1+x) \left (-x^3 \log (x)+5 x^2 \log (5+x)+x^3 \log (5+x)+5 x^2 \log (x) \log (5+x)+x^3 \log (x) \log (5+x)-500 \log ^2(5+x)-100 x \log ^2(5+x)\right )}{(5+x) \log (5+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx+\int (1+2 x) \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx\\ &=\int \frac {(1+x) \left ((5+x) \left (x^2-100 \log (5+x)\right ) \log (5+x)+x^2 \log (x) (-x+(5+x) \log (5+x))\right )}{(5+x) \log (5+x) \left (x^2 \log (x)+25 (4+x) \log (5+x)\right )} \, dx+\int \left (\log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right )+2 x \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right )\right ) \, dx\\ &=2 \int x \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx+\int \left (-\frac {4 (1+x)}{4+x}-\frac {x (1+x)}{(5+x) \log (5+x)}+\frac {25 x (1+x) (4+x)}{(5+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )}+\frac {x^2 (1+x) (4+x+8 \log (x)+x \log (x))}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )}\right ) \, dx+\int \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx\\ &=2 \int x \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx-4 \int \frac {1+x}{4+x} \, dx+25 \int \frac {x (1+x) (4+x)}{(5+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-\int \frac {x (1+x)}{(5+x) \log (5+x)} \, dx+\int \frac {x^2 (1+x) (4+x+8 \log (x)+x \log (x))}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx+\int \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx\\ &=2 \int x \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx-4 \int \left (1-\frac {3}{4+x}\right ) \, dx+25 \int \left (\frac {4}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}+\frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}-\frac {20}{(5+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )}\right ) \, dx-\int \left (-\frac {4}{\log (5+x)}+\frac {x}{\log (5+x)}+\frac {20}{(5+x) \log (5+x)}\right ) \, dx+\int \left (\frac {12 (4+x+8 \log (x)+x \log (x))}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}-\frac {3 x (4+x+8 \log (x)+x \log (x))}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}+\frac {x^2 (4+x+8 \log (x)+x \log (x))}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}-\frac {48 (4+x+8 \log (x)+x \log (x))}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )}\right ) \, dx+\int \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx\\ &=-4 x+12 \log (4+x)+2 \int x \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx-3 \int \frac {x (4+x+8 \log (x)+x \log (x))}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+4 \int \frac {1}{\log (5+x)} \, dx+12 \int \frac {4+x+8 \log (x)+x \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-20 \int \frac {1}{(5+x) \log (5+x)} \, dx+25 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-48 \int \frac {4+x+8 \log (x)+x \log (x)}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx+100 \int \frac {1}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-500 \int \frac {1}{(5+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-\int \frac {x}{\log (5+x)} \, dx+\int \frac {x^2 (4+x+8 \log (x)+x \log (x))}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+\int \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx\\ &=-4 x+12 \log (4+x)+2 \int x \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx-3 \int \left (\frac {4 x}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}+\frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}+\frac {8 x \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}+\frac {x^2 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}\right ) \, dx+4 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5+x\right )+12 \int \left (\frac {4}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}+\frac {x}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}+\frac {8 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}+\frac {x \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}\right ) \, dx-20 \operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,5+x\right )+25 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-48 \int \left (\frac {4}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )}+\frac {x}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )}+\frac {8 \log (x)}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )}+\frac {x \log (x)}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )}\right ) \, dx+100 \int \frac {1}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-500 \int \frac {1}{(5+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-\int \left (-\frac {5}{\log (5+x)}+\frac {5+x}{\log (5+x)}\right ) \, dx+\int \left (\frac {4 x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}+\frac {x^3}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}+\frac {8 x^2 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}+\frac {x^3 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}\right ) \, dx+\int \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx\\ &=-4 x+12 \log (4+x)+4 \text {li}(5+x)+2 \int x \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx-3 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-3 \int \frac {x^2 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+4 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+5 \int \frac {1}{\log (5+x)} \, dx+8 \int \frac {x^2 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+12 \int \frac {x \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-20 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (5+x)\right )-24 \int \frac {x \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+25 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+48 \int \frac {1}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-48 \int \frac {x}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-48 \int \frac {x \log (x)}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx+96 \int \frac {\log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+100 \int \frac {1}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-192 \int \frac {1}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-384 \int \frac {\log (x)}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-500 \int \frac {1}{(5+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-\int \frac {5+x}{\log (5+x)} \, dx+\int \frac {x^3}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+\int \frac {x^3 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+\int \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx\\ &=-4 x+12 \log (4+x)-20 \log (\log (5+x))+4 \text {li}(5+x)+2 \int x \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx-3 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-3 \int \frac {x^2 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+4 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+5 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5+x\right )+8 \int \frac {x^2 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+12 \int \frac {x \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-24 \int \frac {x \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+25 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+48 \int \frac {1}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-48 \int \left (\frac {1}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}-\frac {4}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )}\right ) \, dx-48 \int \left (\frac {\log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)}-\frac {4 \log (x)}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )}\right ) \, dx+96 \int \frac {\log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+100 \int \frac {1}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-192 \int \frac {1}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-384 \int \frac {\log (x)}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-500 \int \frac {1}{(5+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx+\int \frac {x^3}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+\int \frac {x^3 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+\int \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx-\operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,5+x\right )\\ &=-4 x+12 \log (4+x)-20 \log (\log (5+x))+9 \text {li}(5+x)+2 \int x \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx-3 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-3 \int \frac {x^2 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+4 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+8 \int \frac {x^2 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+12 \int \frac {x \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-24 \int \frac {x \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+25 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-48 \int \frac {\log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+96 \int \frac {\log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+100 \int \frac {1}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+192 \int \frac {\log (x)}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-384 \int \frac {\log (x)}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-500 \int \frac {1}{(5+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx+\int \frac {x^3}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+\int \frac {x^3 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+\int \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx-\operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (5+x)\right )\\ &=-4 x-\text {Ei}(2 \log (5+x))+12 \log (4+x)-20 \log (\log (5+x))+9 \text {li}(5+x)+2 \int x \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx-3 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-3 \int \frac {x^2 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+4 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+8 \int \frac {x^2 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+12 \int \frac {x \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-24 \int \frac {x \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+25 \int \frac {x^2}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx-48 \int \frac {\log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+96 \int \frac {\log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+100 \int \frac {1}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+192 \int \frac {\log (x)}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-384 \int \frac {\log (x)}{(4+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx-500 \int \frac {1}{(5+x) \left (x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)\right )} \, dx+\int \frac {x^3}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+\int \frac {x^3 \log (x)}{x^2 \log (x)+100 \log (5+x)+25 x \log (5+x)} \, dx+\int \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 26, normalized size = 0.93 \begin {gather*} x (1+x) \log \left (1+\frac {4}{x}+\frac {x \log (x)}{25 \log (5+x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 34, normalized size = 1.21 \begin {gather*} {\left (x^{2} + x\right )} \log \left (\frac {x^{2} \log \relax (x) + 25 \, {\left (x + 4\right )} \log \left (x + 5\right )}{25 \, x \log \left (x + 5\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.29, size = 979, normalized size = 34.96
method | result | size |
risch | \(-x^{2} \ln \relax (x )-2 x^{2} \ln \relax (5)-2 x \ln \relax (5)-x \ln \relax (x )-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{x \ln \left (5+x \right )}\right )^{3}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{x \ln \left (5+x \right )}\right )}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{x \ln \left (5+x \right )}\right )^{3}}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{x \ln \left (5+x \right )}\right )^{2}}{2}+\left (x^{2}+x \right ) \ln \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )-x^{2} \ln \left (\ln \left (5+x \right )\right )-x \ln \left (\ln \left (5+x \right )\right )+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{x \ln \left (5+x \right )}\right )^{2}}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (5+x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right )^{2}}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{x \ln \left (5+x \right )}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{x \ln \left (5+x \right )}\right )^{2}}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{x \ln \left (5+x \right )}\right )}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (5+x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{\ln \left (5+x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (5+x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right )}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right )^{3}}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \relax (x )+25 x \ln \left (5+x \right )+100 \ln \left (5+x \right )\right )}{\ln \left (5+x \right )}\right )^{3}}{2}\) | \(979\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 61, normalized size = 2.18 \begin {gather*} -2 \, x^{2} \log \relax (5) - 2 \, x \log \relax (5) + {\left (x^{2} + x\right )} \log \left (x^{2} \log \relax (x) + 25 \, x \log \left (x + 5\right ) + 100 \, \log \left (x + 5\right )\right ) - {\left (x^{2} + x\right )} \log \relax (x) - {\left (x^{2} + x\right )} \log \left (\log \left (x + 5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.84, size = 63, normalized size = 2.25 \begin {gather*} \frac {\ln \left (\frac {\frac {x^2\,\ln \relax (x)}{25}+\frac {\ln \left (x+5\right )\,\left (25\,x+100\right )}{25}}{x\,\ln \left (x+5\right )}\right )\,\left (x^5+10\,x^4+29\,x^3+20\,x^2\right )}{x\,\left (x+4\right )\,\left (x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________