Optimal. Leaf size=19 \[ \frac {e^{1+6 x}}{5-4 e^{-4+x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 21, normalized size of antiderivative = 1.11, number of steps used = 3, number of rules used = 3, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {2282, 12, 74} \begin {gather*} \frac {e^{6 x+5}}{5 e^4-4 e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 74
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {10 e^5 \left (3 e^4-2 x\right ) x^5}{\left (5 e^4-4 x\right )^2} \, dx,x,e^x\right )\\ &=\left (10 e^5\right ) \operatorname {Subst}\left (\int \frac {\left (3 e^4-2 x\right ) x^5}{\left (5 e^4-4 x\right )^2} \, dx,x,e^x\right )\\ &=\frac {e^{5+6 x}}{5 e^4-4 e^x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.05, size = 39, normalized size = 2.05 \begin {gather*} -\frac {15625 e^{29}-12500 e^{25+x}+4096 e^{5+6 x}}{4096 \left (-5 e^4+4 e^x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 23, normalized size = 1.21 \begin {gather*} -\frac {e^{25}}{4 \, e^{\left (-5 \, x + 20\right )} - 5 \, e^{\left (-6 \, x + 24\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 24, normalized size = 1.26
method | result | size |
norman | \(\frac {{\mathrm e}^{25} {\mathrm e}^{5 x -20}}{5 \,{\mathrm e}^{-x +4}-4}\) | \(24\) |
risch | \(-\frac {625 \,{\mathrm e}^{x +21}}{1024}-\frac {125 \,{\mathrm e}^{17+2 x}}{256}-\frac {25 \,{\mathrm e}^{3 x +13}}{64}-\frac {5 \,{\mathrm e}^{4 x +9}}{16}-\frac {{\mathrm e}^{5 x +5}}{4}+\frac {3125 \,{\mathrm e}^{25}}{1024 \left (5 \,{\mathrm e}^{-x +4}-4\right )}\) | \(56\) |
default | \(\frac {-\frac {15 \,{\mathrm e} \,{\mathrm e}^{8} {\mathrm e}^{5 x}}{8}-\frac {125 \,{\mathrm e} \,{\mathrm e}^{12} {\mathrm e}^{4 x}}{32}-\frac {625 \,{\mathrm e} \,{\mathrm e}^{16} {\mathrm e}^{3 x}}{64}-\frac {9375 \,{\mathrm e}^{20} {\mathrm e} \,{\mathrm e}^{2 x}}{256}+\frac {234375 \,{\mathrm e}^{28} {\mathrm e}}{2048}}{5 \,{\mathrm e}^{4}-4 \,{\mathrm e}^{x}}+\frac {{\mathrm e} \,{\mathrm e}^{4} {\mathrm e}^{6 x}+\frac {15 \,{\mathrm e} \,{\mathrm e}^{8} {\mathrm e}^{5 x}}{8}+\frac {125 \,{\mathrm e} \,{\mathrm e}^{12} {\mathrm e}^{4 x}}{32}+\frac {625 \,{\mathrm e} \,{\mathrm e}^{16} {\mathrm e}^{3 x}}{64}+\frac {9375 \,{\mathrm e}^{20} {\mathrm e} \,{\mathrm e}^{2 x}}{256}-\frac {234375 \,{\mathrm e}^{28} {\mathrm e}}{2048}}{5 \,{\mathrm e}^{4}-4 \,{\mathrm e}^{x}}\) | \(152\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 23, normalized size = 1.21 \begin {gather*} -\frac {e^{25}}{4 \, e^{\left (-5 \, x + 20\right )} - 5 \, e^{\left (-6 \, x + 24\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 55, normalized size = 2.89 \begin {gather*} \frac {3125\,{\mathrm {e}}^{25}}{1024\,\left (5\,{\mathrm {e}}^{4-x}-4\right )}-\frac {{\mathrm {e}}^{5\,x+5}}{4}-\frac {5\,{\mathrm {e}}^{4\,x+9}}{16}-\frac {25\,{\mathrm {e}}^{3\,x+13}}{64}-\frac {125\,{\mathrm {e}}^{2\,x+17}}{256}-\frac {625\,{\mathrm {e}}^{x+21}}{1024} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.29, size = 76, normalized size = 4.00 \begin {gather*} - \frac {625 e^{25} e^{x - 4}}{1024} - \frac {125 e^{25} e^{2 x - 8}}{256} - \frac {25 e^{25} e^{3 x - 12}}{64} - \frac {5 e^{25} e^{4 x - 16}}{16} - \frac {e^{25} e^{5 x - 20}}{4} + \frac {3125 e^{25}}{5120 e^{4 - x} - 4096} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________