Optimal. Leaf size=21 \[ -e^x-x+e^{-10-x^2} \log (4) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {6688, 2194, 2209} \begin {gather*} e^{-x^2-10} \log (4)-x-e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2209
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1-e^x-2 e^{-10-x^2} x \log (4)\right ) \, dx\\ &=-x-(2 \log (4)) \int e^{-10-x^2} x \, dx-\int e^x \, dx\\ &=-e^x-x+e^{-10-x^2} \log (4)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 1.00 \begin {gather*} -e^x-x+e^{-10-x^2} \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 31, normalized size = 1.48 \begin {gather*} -{\left ({\left (x e^{6} + e^{\left (x + 6\right )}\right )} e^{\left (x^{2} + 4\right )} - 2 \, \log \relax (2)\right )} e^{\left (-x^{2} - 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 23, normalized size = 1.10 \begin {gather*} -{\left (x e^{10} - 2 \, e^{\left (-x^{2}\right )} \log \relax (2) + e^{\left (x + 10\right )}\right )} e^{\left (-10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 1.00
method | result | size |
risch | \(-x -{\mathrm e}^{x}+2 \ln \relax (2) {\mathrm e}^{-x^{2}-10}\) | \(21\) |
default | \({\mathrm e}^{-6} \left (-{\mathrm e}^{6} {\mathrm e}^{x}+2 \,{\mathrm e}^{-4} \ln \relax (2) {\mathrm e}^{-x^{2}}-x \,{\mathrm e}^{6}\right )\) | \(32\) |
norman | \(\left (-x \,{\mathrm e}^{x^{2}+4}+2 \,{\mathrm e}^{-6} \ln \relax (2)-{\mathrm e}^{x} {\mathrm e}^{x^{2}+4}\right ) {\mathrm e}^{-x^{2}-4}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 20, normalized size = 0.95 \begin {gather*} 2 \, e^{\left (-x^{2} - 10\right )} \log \relax (2) - x - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 20, normalized size = 0.95 \begin {gather*} 2\,{\mathrm {e}}^{-10}\,{\mathrm {e}}^{-x^2}\,\ln \relax (2)-{\mathrm {e}}^x-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 20, normalized size = 0.95 \begin {gather*} - x - e^{x} + \frac {2 e^{- x^{2} - 4} \log {\relax (2 )}}{e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________