Optimal. Leaf size=32 \[ \frac {-3-e+x}{x}-(5+x) \log \left (\frac {e^{e^4}}{x}\right )-\log (2+x) \]
________________________________________________________________________________________
Rubi [A] time = 0.30, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1593, 6742, 1620, 2295} \begin {gather*} -\frac {3+e}{x}-x \log \left (\frac {e^{e^4}}{x}\right )+5 \log (x)-\log (x+2) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 1620
Rule 2295
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6+13 x+6 x^2+x^3+e (2+x)+\left (-2 x^2-x^3\right ) \log \left (\frac {e^{e^4}}{x}\right )}{x^2 (2+x)} \, dx\\ &=\int \left (\frac {2 (3+e)+(13+e) x+6 x^2+x^3}{x^2 (2+x)}-\log \left (\frac {e^{e^4}}{x}\right )\right ) \, dx\\ &=\int \frac {2 (3+e)+(13+e) x+6 x^2+x^3}{x^2 (2+x)} \, dx-\int \log \left (\frac {e^{e^4}}{x}\right ) \, dx\\ &=-x-x \log \left (\frac {e^{e^4}}{x}\right )+\int \left (1+\frac {1}{-2-x}+\frac {3+e}{x^2}+\frac {5}{x}\right ) \, dx\\ &=-\frac {3+e}{x}-x \log \left (\frac {e^{e^4}}{x}\right )+5 \log (x)-\log (2+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 35, normalized size = 1.09 \begin {gather*} -\frac {3}{x}-\frac {e}{x}-e^4 x-x \log \left (\frac {1}{x}\right )+5 \log (x)-\log (2+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 32, normalized size = 1.00 \begin {gather*} -\frac {x^{2} \log \left (\frac {e^{\left (e^{4}\right )}}{x}\right ) + x \log \left (x + 2\right ) - 5 \, x \log \relax (x) + e + 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 140, normalized size = 4.38 \begin {gather*} -\frac {1}{2} \, {\left (2 \, e^{\left (2 \, e^{4}\right )} \log \left (\frac {e^{\left (e^{4}\right )}}{x}\right ) + \frac {e^{\left (2 \, e^{4} + 1\right )} \log \left (\frac {2 \, e^{\left (e^{4} + 1\right )}}{x} + e^{\left (e^{4} + 1\right )}\right )}{x} + \frac {2 \, e^{\left (2 \, e^{4}\right )} \log \left (\frac {2 \, e^{\left (e^{4}\right )}}{x} + e^{\left (e^{4}\right )}\right )}{x} - \frac {e^{\left (2 \, e^{4} + 1\right )} \log \left (\frac {2 \, e^{\left (e^{4}\right )}}{x} + e^{\left (e^{4}\right )}\right )}{x} + \frac {8 \, e^{\left (2 \, e^{4}\right )} \log \left (\frac {e^{\left (e^{4}\right )}}{x}\right )}{x} + \frac {6 \, e^{\left (2 \, e^{4}\right )}}{x^{2}} + \frac {2 \, e^{\left (2 \, e^{4} + 1\right )}}{x^{2}}\right )} x e^{\left (-2 \, e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 35, normalized size = 1.09
method | result | size |
risch | \(-x \ln \left (\frac {{\mathrm e}^{{\mathrm e}^{4}}}{x}\right )+\frac {5 x \ln \relax (x )-x \ln \left (2+x \right )-{\mathrm e}-3}{x}\) | \(35\) |
norman | \(\frac {-5 x \ln \left (\frac {{\mathrm e}^{{\mathrm e}^{4}}}{x}\right )-x^{2} \ln \left (\frac {{\mathrm e}^{{\mathrm e}^{4}}}{x}\right )-3-{\mathrm e}}{x}-\ln \left (2+x \right )\) | \(42\) |
derivativedivides | \(-{\mathrm e}^{{\mathrm e}^{4}} \left (\frac {3 \,{\mathrm e}^{-{\mathrm e}^{4}}}{x}+\frac {{\mathrm e}^{-{\mathrm e}^{4}} {\mathrm e}}{x}+4 \left ({\mathrm e}^{-2 \,{\mathrm e}^{4}}\right )^{2} {\mathrm e}^{3 \,{\mathrm e}^{4}} \ln \left (\frac {{\mathrm e}^{{\mathrm e}^{4}}}{x}\right )-{\mathrm e}^{-3 \,{\mathrm e}^{4}} {\mathrm e}^{4 \,{\mathrm e}^{4}} {\mathrm e}^{-2 \,{\mathrm e}^{4}} x +5 \,{\mathrm e}^{-{\mathrm e}^{4}} \ln \left ({\mathrm e}^{{\mathrm e}^{4}}+\frac {2 \,{\mathrm e}^{{\mathrm e}^{4}}}{x}\right )-6 \,{\mathrm e}^{-3 \,{\mathrm e}^{4}} \ln \left ({\mathrm e}^{{\mathrm e}^{4}}+\frac {2 \,{\mathrm e}^{{\mathrm e}^{4}}}{x}\right ) {\mathrm e}^{2 \,{\mathrm e}^{4}}+2 \,{\mathrm e}^{-4 \,{\mathrm e}^{4}} \ln \left ({\mathrm e}^{{\mathrm e}^{4}}+\frac {2 \,{\mathrm e}^{{\mathrm e}^{4}}}{x}\right ) {\mathrm e}^{3 \,{\mathrm e}^{4}}+x \,{\mathrm e}^{-{\mathrm e}^{4}} \ln \left (\frac {{\mathrm e}^{{\mathrm e}^{4}}}{x}\right )+x \,{\mathrm e}^{-{\mathrm e}^{4}}\right )\) | \(163\) |
default | \(-{\mathrm e}^{{\mathrm e}^{4}} \left (\frac {3 \,{\mathrm e}^{-{\mathrm e}^{4}}}{x}+\frac {{\mathrm e}^{-{\mathrm e}^{4}} {\mathrm e}}{x}+4 \left ({\mathrm e}^{-2 \,{\mathrm e}^{4}}\right )^{2} {\mathrm e}^{3 \,{\mathrm e}^{4}} \ln \left (\frac {{\mathrm e}^{{\mathrm e}^{4}}}{x}\right )-{\mathrm e}^{-3 \,{\mathrm e}^{4}} {\mathrm e}^{4 \,{\mathrm e}^{4}} {\mathrm e}^{-2 \,{\mathrm e}^{4}} x +5 \,{\mathrm e}^{-{\mathrm e}^{4}} \ln \left ({\mathrm e}^{{\mathrm e}^{4}}+\frac {2 \,{\mathrm e}^{{\mathrm e}^{4}}}{x}\right )-6 \,{\mathrm e}^{-3 \,{\mathrm e}^{4}} \ln \left ({\mathrm e}^{{\mathrm e}^{4}}+\frac {2 \,{\mathrm e}^{{\mathrm e}^{4}}}{x}\right ) {\mathrm e}^{2 \,{\mathrm e}^{4}}+2 \,{\mathrm e}^{-4 \,{\mathrm e}^{4}} \ln \left ({\mathrm e}^{{\mathrm e}^{4}}+\frac {2 \,{\mathrm e}^{{\mathrm e}^{4}}}{x}\right ) {\mathrm e}^{3 \,{\mathrm e}^{4}}+x \,{\mathrm e}^{-{\mathrm e}^{4}} \ln \left (\frac {{\mathrm e}^{{\mathrm e}^{4}}}{x}\right )+x \,{\mathrm e}^{-{\mathrm e}^{4}}\right )\) | \(163\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 56, normalized size = 1.75 \begin {gather*} -x e^{4} - \frac {1}{2} \, {\left (\frac {2}{x} - \log \left (x + 2\right ) + \log \relax (x)\right )} e - \frac {1}{2} \, {\left (\log \left (x + 2\right ) - \log \relax (x)\right )} e + x \log \relax (x) - \frac {3}{x} - \log \left (x + 2\right ) + 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.09, size = 32, normalized size = 1.00 \begin {gather*} -\ln \left (x+2\right )-5\,\ln \left (\frac {1}{x}\right )-x\,\left (\ln \left (\frac {1}{x}\right )+{\mathrm {e}}^4\right )-\frac {\mathrm {e}+3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 27, normalized size = 0.84 \begin {gather*} - x \log {\left (\frac {e^{e^{4}}}{x} \right )} + 5 \log {\relax (x )} - \log {\left (x + 2 \right )} + \frac {-3 - e}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________