Optimal. Leaf size=32 \[ e^{e^{x-3 (1+x) \left (-e^5+5 e^{2-e^{-4+x}+x}+x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 25.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right ) \left (-2+3 e^5-6 x+e^{2-e^{-4+x}+x} \left (-30-15 x+e^{-4+x} (15+15 x)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \exp \left (\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right ) \left (-2 \left (1-\frac {3 e^5}{2}\right )-6 x+e^{2-e^{-4+x}+x} \left (-30-15 x+e^{-4+x} (15+15 x)\right )\right ) \, dx\\ &=\int \left (-2 \exp \left (\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right ) \left (1-\frac {3 e^5}{2}\right )-6 \exp \left (\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right ) x+15 \exp \left (-2-e^{-4+x}+\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-x-3 x^2+e^5 (3+3 x)\right ) \left (-2 e^4+e^x-e^4 x+e^x x\right )\right ) \, dx\\ &=-\left (6 \int \exp \left (\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right ) x \, dx\right )+15 \int \exp \left (-2-e^{-4+x}+\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-x-3 x^2+e^5 (3+3 x)\right ) \left (-2 e^4+e^x-e^4 x+e^x x\right ) \, dx-\left (2-3 e^5\right ) \int \exp \left (\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right ) \, dx\\ &=-\left (6 \int \exp \left (\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right ) x \, dx\right )+15 \int \left (\exp \left (-2-e^{-4+x}+\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-3 x^2+e^5 (3+3 x)\right )-2 \exp \left (2-e^{-4+x}+\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-x-3 x^2+e^5 (3+3 x)\right )+\exp \left (-2-e^{-4+x}+\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-3 x^2+e^5 (3+3 x)\right ) x-\exp \left (2-e^{-4+x}+\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-x-3 x^2+e^5 (3+3 x)\right ) x\right ) \, dx-\left (2-3 e^5\right ) \int \exp \left (\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right ) \, dx\\ &=-\left (6 \int \exp \left (\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right ) x \, dx\right )+15 \int \exp \left (-2-e^{-4+x}+\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-3 x^2+e^5 (3+3 x)\right ) \, dx+15 \int \exp \left (-2-e^{-4+x}+\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-3 x^2+e^5 (3+3 x)\right ) x \, dx-15 \int \exp \left (2-e^{-4+x}+\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-x-3 x^2+e^5 (3+3 x)\right ) x \, dx-30 \int \exp \left (2-e^{-4+x}+\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-x-3 x^2+e^5 (3+3 x)\right ) \, dx-\left (2-3 e^5\right ) \int \exp \left (\exp \left (e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right )+e^{2-e^{-4+x}+x} (-15-15 x)-2 x-3 x^2+e^5 (3+3 x)\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 38, normalized size = 1.19 \begin {gather*} e^{e^{3 e^5 (1+x)-15 e^{2-e^{-4+x}+x} (1+x)-x (2+3 x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 33, normalized size = 1.03 \begin {gather*} e^{\left (e^{\left (-3 \, x^{2} + 3 \, {\left (x + 1\right )} e^{5} - 15 \, {\left (x + 1\right )} e^{\left (x - e^{\left (x - 4\right )} + 2\right )} - 2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (15 \, {\left ({\left (x + 1\right )} e^{\left (x - 4\right )} - x - 2\right )} e^{\left (x - e^{\left (x - 4\right )} + 2\right )} - 6 \, x + 3 \, e^{5} - 2\right )} e^{\left (-3 \, x^{2} + 3 \, {\left (x + 1\right )} e^{5} - 15 \, {\left (x + 1\right )} e^{\left (x - e^{\left (x - 4\right )} + 2\right )} - 2 \, x + e^{\left (-3 \, x^{2} + 3 \, {\left (x + 1\right )} e^{5} - 15 \, {\left (x + 1\right )} e^{\left (x - e^{\left (x - 4\right )} + 2\right )} - 2 \, x\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 46, normalized size = 1.44
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{3 x \,{\mathrm e}^{5}-15 \,{\mathrm e}^{-{\mathrm e}^{x -4}+2+x} x -3 x^{2}+3 \,{\mathrm e}^{5}-15 \,{\mathrm e}^{-{\mathrm e}^{x -4}+2+x}-2 x}}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.26, size = 45, normalized size = 1.41 \begin {gather*} e^{\left (e^{\left (-3 \, x^{2} + 3 \, x e^{5} - 15 \, x e^{\left (x - e^{\left (x - 4\right )} + 2\right )} - 2 \, x + 3 \, e^{5} - 15 \, e^{\left (x - e^{\left (x - 4\right )} + 2\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.52, size = 52, normalized size = 1.62 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{-15\,{\mathrm {e}}^{-{\mathrm {e}}^{-4}\,{\mathrm {e}}^x}\,{\mathrm {e}}^2\,{\mathrm {e}}^x}\,{\mathrm {e}}^{3\,{\mathrm {e}}^5}\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{-15\,x\,{\mathrm {e}}^{-{\mathrm {e}}^{-4}\,{\mathrm {e}}^x}\,{\mathrm {e}}^2\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-3\,x^2}\,{\mathrm {e}}^{3\,x\,{\mathrm {e}}^5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 14.71, size = 36, normalized size = 1.12 \begin {gather*} e^{e^{- 3 x^{2} - 2 x + \left (- 15 x - 15\right ) e^{x - e^{x - 4} + 2} + \left (3 x + 3\right ) e^{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________