Optimal. Leaf size=27 \[ \frac {\left (2+4 e^{2 x}+\frac {8 x}{9}\right )^4 x^2}{\left (-4+x^2\right )^4} \]
________________________________________________________________________________________
Rubi [B] time = 3.94, antiderivative size = 532, normalized size of antiderivative = 19.70, number of steps used = 130, number of rules used = 14, integrand size = 194, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.072, Rules used = {6688, 12, 6742, 261, 288, 199, 207, 266, 43, 264, 2288, 2177, 2178, 2269} \begin {gather*} \frac {1280 x}{729 \left (4-x^2\right )^2}-\frac {12896 x}{729 \left (4-x^2\right )^3}+\frac {128 x}{3 \left (4-x^2\right )^4}+\frac {49664}{2187 \left (4-x^2\right )^2}-\frac {1231376}{6561 \left (4-x^2\right )^3}+\frac {869056}{2187 \left (4-x^2\right )^4}+\frac {256 x^8}{6561 \left (4-x^2\right )^4}+\frac {512 x^5}{243 \left (4-x^2\right )^4}-\frac {1280 x^3}{729 \left (4-x^2\right )^3}+\frac {23200 x^3}{729 \left (4-x^2\right )^4}+\frac {256 e^{8 x} \left (4 x-x^3\right ) x}{\left (4-x^2\right )^5}+\frac {37 e^{2 x}}{216 (2-x)}-\frac {17 e^{4 x}}{216 (2-x)}-\frac {e^{6 x}}{2 (2-x)}+\frac {37 e^{2 x}}{216 (x+2)}-\frac {17 e^{4 x}}{216 (x+2)}-\frac {e^{6 x}}{2 (x+2)}+\frac {1615 e^{2 x}}{2916 (2-x)^2}-\frac {161 e^{4 x}}{108 (2-x)^2}-\frac {17 e^{6 x}}{9 (2-x)^2}+\frac {383 e^{2 x}}{2916 (x+2)^2}+\frac {127 e^{4 x}}{108 (x+2)^2}-\frac {e^{6 x}}{9 (x+2)^2}-\frac {2312 e^{2 x}}{243 (2-x)^3}-\frac {272 e^{4 x}}{27 (2-x)^3}-\frac {32 e^{6 x}}{9 (2-x)^3}+\frac {8 e^{2 x}}{243 (x+2)^3}+\frac {16 e^{4 x}}{27 (x+2)^3}+\frac {32 e^{6 x}}{9 (x+2)^3}+\frac {9826 e^{2 x}}{729 (2-x)^4}+\frac {578 e^{4 x}}{27 (2-x)^4}+\frac {136 e^{6 x}}{9 (2-x)^4}+\frac {2 e^{2 x}}{729 (x+2)^4}+\frac {2 e^{4 x}}{27 (x+2)^4}+\frac {8 e^{6 x}}{9 (x+2)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 199
Rule 207
Rule 261
Rule 264
Rule 266
Rule 288
Rule 2177
Rule 2178
Rule 2269
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 x \left (9+18 e^{2 x}+4 x\right )^3 \left (36+48 x+27 x^2+4 x^3-18 e^{2 x} \left (-4-16 x-3 x^2+4 x^3\right )\right )}{6561 \left (4-x^2\right )^5} \, dx\\ &=\frac {32 \int \frac {x \left (9+18 e^{2 x}+4 x\right )^3 \left (36+48 x+27 x^2+4 x^3-18 e^{2 x} \left (-4-16 x-3 x^2+4 x^3\right )\right )}{\left (4-x^2\right )^5} \, dx}{6561}\\ &=\frac {32 \int \left (-\frac {26244 x}{\left (-4+x^2\right )^5}-\frac {69984 x^2}{\left (-4+x^2\right )^5}-\frac {81891 x^3}{\left (-4+x^2\right )^5}-\frac {52200 x^4}{\left (-4+x^2\right )^5}-\frac {18624 x^5}{\left (-4+x^2\right )^5}-\frac {3456 x^6}{\left (-4+x^2\right )^5}-\frac {256 x^7}{\left (-4+x^2\right )^5}+\frac {104976 e^{8 x} x \left (-4-16 x-3 x^2+4 x^3\right )}{\left (-4+x^2\right )^5}+\frac {72 e^{2 x} x (9+4 x)^2 \left (-36-76 x-43 x^2+3 x^3+4 x^4\right )}{\left (-4+x^2\right )^5}+\frac {23328 e^{6 x} x \left (-36-132 x-75 x^2+17 x^3+12 x^4\right )}{\left (-4+x^2\right )^5}+\frac {1944 e^{4 x} x \left (-324-1080 x-947 x^2-146 x^3+112 x^4+32 x^5\right )}{\left (-4+x^2\right )^5}\right ) \, dx}{6561}\\ &=\frac {256}{729} \int \frac {e^{2 x} x (9+4 x)^2 \left (-36-76 x-43 x^2+3 x^3+4 x^4\right )}{\left (-4+x^2\right )^5} \, dx-\frac {8192 \int \frac {x^7}{\left (-4+x^2\right )^5} \, dx}{6561}+\frac {256}{27} \int \frac {e^{4 x} x \left (-324-1080 x-947 x^2-146 x^3+112 x^4+32 x^5\right )}{\left (-4+x^2\right )^5} \, dx-\frac {4096}{243} \int \frac {x^6}{\left (-4+x^2\right )^5} \, dx-\frac {198656 \int \frac {x^5}{\left (-4+x^2\right )^5} \, dx}{2187}+\frac {1024}{9} \int \frac {e^{6 x} x \left (-36-132 x-75 x^2+17 x^3+12 x^4\right )}{\left (-4+x^2\right )^5} \, dx-128 \int \frac {x}{\left (-4+x^2\right )^5} \, dx-\frac {185600}{729} \int \frac {x^4}{\left (-4+x^2\right )^5} \, dx-\frac {1024}{3} \int \frac {x^2}{\left (-4+x^2\right )^5} \, dx-\frac {10784}{27} \int \frac {x^3}{\left (-4+x^2\right )^5} \, dx+512 \int \frac {e^{8 x} x \left (-4-16 x-3 x^2+4 x^3\right )}{\left (-4+x^2\right )^5} \, dx\\ &=\frac {16}{\left (4-x^2\right )^4}+\frac {128 x}{3 \left (4-x^2\right )^4}+\frac {23200 x^3}{729 \left (4-x^2\right )^4}+\frac {512 x^5}{243 \left (4-x^2\right )^4}+\frac {256 x^8}{6561 \left (4-x^2\right )^4}+\frac {256 e^{8 x} x \left (4 x-x^3\right )}{\left (4-x^2\right )^5}+\frac {256}{729} \int \left (-\frac {4913 e^{2 x}}{32 (-2+x)^5}-\frac {289 e^{2 x}}{64 (-2+x)^4}+\frac {26129 e^{2 x}}{512 (-2+x)^3}+\frac {7459 e^{2 x}}{2048 (-2+x)^2}-\frac {e^{2 x}}{32 (2+x)^5}-\frac {17 e^{2 x}}{64 (2+x)^4}-\frac {287 e^{2 x}}{512 (2+x)^3}+\frac {533 e^{2 x}}{2048 (2+x)^2}-\frac {999 e^{2 x}}{256 \left (-4+x^2\right )}\right ) \, dx+\frac {256}{27} \int \left (-\frac {289 e^{4 x}}{32 (-2+x)^5}+\frac {187 e^{4 x}}{32 (-2+x)^4}+\frac {2337 e^{4 x}}{512 (-2+x)^3}-\frac {1305 e^{4 x}}{2048 (-2+x)^2}-\frac {e^{4 x}}{32 (2+x)^5}-\frac {5 e^{4 x}}{32 (2+x)^4}+\frac {e^{4 x}}{512 (2+x)^3}+\frac {1033 e^{4 x}}{2048 (2+x)^2}+\frac {17 e^{4 x}}{128 \left (-4+x^2\right )}\right ) \, dx-\frac {2560}{243} \int \frac {x^4}{\left (-4+x^2\right )^4} \, dx-\frac {128}{3} \int \frac {1}{\left (-4+x^2\right )^4} \, dx-\frac {99328 \operatorname {Subst}\left (\int \frac {x^2}{(-4+x)^5} \, dx,x,x^2\right )}{2187}-\frac {23200}{243} \int \frac {x^2}{\left (-4+x^2\right )^4} \, dx+\frac {1024}{9} \int \left (-\frac {17 e^{6 x}}{32 (-2+x)^5}+\frac {45 e^{6 x}}{64 (-2+x)^4}+\frac {113 e^{6 x}}{512 (-2+x)^3}-\frac {213 e^{6 x}}{2048 (-2+x)^2}-\frac {e^{6 x}}{32 (2+x)^5}-\frac {3 e^{6 x}}{64 (2+x)^4}+\frac {97 e^{6 x}}{512 (2+x)^3}-\frac {3 e^{6 x}}{2048 (2+x)^2}+\frac {27 e^{6 x}}{256 \left (-4+x^2\right )}\right ) \, dx-\frac {5392}{27} \operatorname {Subst}\left (\int \frac {x}{(-4+x)^5} \, dx,x,x^2\right )\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.26, size = 28, normalized size = 1.04 \begin {gather*} \frac {16 x^2 \left (9+18 e^{2 x}+4 x\right )^4}{6561 \left (-4+x^2\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 125, normalized size = 4.63 \begin {gather*} \frac {16 \, {\left (256 \, x^{6} + 2304 \, x^{5} + 7776 \, x^{4} + 11664 \, x^{3} + 104976 \, x^{2} e^{\left (8 \, x\right )} + 6561 \, x^{2} + 23328 \, {\left (4 \, x^{3} + 9 \, x^{2}\right )} e^{\left (6 \, x\right )} + 1944 \, {\left (16 \, x^{4} + 72 \, x^{3} + 81 \, x^{2}\right )} e^{\left (4 \, x\right )} + 72 \, {\left (64 \, x^{5} + 432 \, x^{4} + 972 \, x^{3} + 729 \, x^{2}\right )} e^{\left (2 \, x\right )}\right )}}{6561 \, {\left (x^{8} - 16 \, x^{6} + 96 \, x^{4} - 256 \, x^{2} + 256\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 140, normalized size = 5.19 \begin {gather*} \frac {16 \, {\left (256 \, x^{6} + 4608 \, x^{5} e^{\left (2 \, x\right )} + 2304 \, x^{5} + 31104 \, x^{4} e^{\left (4 \, x\right )} + 31104 \, x^{4} e^{\left (2 \, x\right )} + 7776 \, x^{4} + 93312 \, x^{3} e^{\left (6 \, x\right )} + 139968 \, x^{3} e^{\left (4 \, x\right )} + 69984 \, x^{3} e^{\left (2 \, x\right )} + 11664 \, x^{3} + 104976 \, x^{2} e^{\left (8 \, x\right )} + 209952 \, x^{2} e^{\left (6 \, x\right )} + 157464 \, x^{2} e^{\left (4 \, x\right )} + 52488 \, x^{2} e^{\left (2 \, x\right )} + 6561 \, x^{2}\right )}}{6561 \, {\left (x^{8} - 16 \, x^{6} + 96 \, x^{4} - 256 \, x^{2} + 256\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.21, size = 145, normalized size = 5.37
method | result | size |
risch | \(\frac {\frac {4096}{6561} x^{6}+\frac {4096}{729} x^{5}+\frac {512}{27} x^{4}+\frac {256}{9} x^{3}+16 x^{2}}{x^{8}-16 x^{6}+96 x^{4}-256 x^{2}+256}+\frac {256 x^{2} {\mathrm e}^{8 x}}{\left (x^{2}-4\right )^{4}}+\frac {512 x^{2} \left (4 x +9\right ) {\mathrm e}^{6 x}}{9 \left (x^{2}-4\right )^{4}}+\frac {128 x^{2} \left (16 x^{2}+72 x +81\right ) {\mathrm e}^{4 x}}{27 \left (x^{2}-4\right )^{4}}+\frac {128 x^{2} \left (64 x^{3}+432 x^{2}+972 x +729\right ) {\mathrm e}^{2 x}}{729 \left (x^{2}-4\right )^{4}}\) | \(145\) |
default | \(\frac {364}{243 \left (2+x \right )^{3}}-\frac {1160}{729 \left (2+x \right )^{4}}+\frac {1160}{729 \left (x -2\right )^{4}}+\frac {4096}{6561 \left (x^{2}-4\right )}-\frac {239}{729 \left (2+x \right )^{2}}+\frac {239}{729 \left (x -2\right )^{2}}+\frac {364}{243 \left (x -2\right )^{3}}+\frac {2672704}{6561 \left (x^{2}-4\right )^{4}}+\frac {57856}{2187 \left (x^{2}-4\right )^{2}}+\frac {432304}{2187 \left (x^{2}-4\right )^{3}}+\frac {{\mathrm e}^{8 x}}{4 x -8}+\frac {{\mathrm e}^{6 x}}{2 x -4}-\frac {37 \,{\mathrm e}^{2 x}}{216 \left (x -2\right )}+\frac {1615 \,{\mathrm e}^{2 x}}{2916 \left (x -2\right )^{2}}+\frac {2312 \,{\mathrm e}^{2 x}}{243 \left (x -2\right )^{3}}+\frac {37 \,{\mathrm e}^{2 x}}{216 \left (2+x \right )}+\frac {383 \,{\mathrm e}^{2 x}}{2916 \left (2+x \right )^{2}}+\frac {8 \,{\mathrm e}^{2 x}}{243 \left (2+x \right )^{3}}+\frac {9826 \,{\mathrm e}^{2 x}}{729 \left (x -2\right )^{4}}+\frac {2 \,{\mathrm e}^{2 x}}{729 \left (2+x \right )^{4}}+\frac {136 \,{\mathrm e}^{6 x}}{9 \left (x -2\right )^{4}}+\frac {17 \,{\mathrm e}^{4 x}}{216 \left (x -2\right )}-\frac {161 \,{\mathrm e}^{4 x}}{108 \left (x -2\right )^{2}}+\frac {272 \,{\mathrm e}^{4 x}}{27 \left (x -2\right )^{3}}+\frac {578 \,{\mathrm e}^{4 x}}{27 \left (x -2\right )^{4}}+\frac {2 \,{\mathrm e}^{4 x}}{27 \left (2+x \right )^{4}}-\frac {17 \,{\mathrm e}^{4 x}}{216 \left (2+x \right )}+\frac {127 \,{\mathrm e}^{4 x}}{108 \left (2+x \right )^{2}}+\frac {16 \,{\mathrm e}^{4 x}}{27 \left (2+x \right )^{3}}+\frac {4 \,{\mathrm e}^{8 x}}{\left (x -2\right )^{4}}-\frac {{\mathrm e}^{8 x}}{4 \left (2+x \right )}-\frac {{\mathrm e}^{8 x}}{2 \left (2+x \right )^{2}}-\frac {{\mathrm e}^{8 x}}{2 \left (x -2\right )^{2}}+\frac {4 \,{\mathrm e}^{8 x}}{\left (2+x \right )^{4}}+\frac {8 \,{\mathrm e}^{6 x}}{9 \left (2+x \right )^{4}}-\frac {{\mathrm e}^{6 x}}{2 \left (2+x \right )}-\frac {{\mathrm e}^{6 x}}{9 \left (2+x \right )^{2}}+\frac {32 \,{\mathrm e}^{6 x}}{9 \left (2+x \right )^{3}}-\frac {17 \,{\mathrm e}^{6 x}}{9 \left (x -2\right )^{2}}+\frac {32 \,{\mathrm e}^{6 x}}{9 \left (x -2\right )^{3}}\) | \(410\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 357, normalized size = 13.22 \begin {gather*} \frac {8 \, {\left (15 \, x^{7} + 292 \, x^{5} - 880 \, x^{3} + 960 \, x\right )}}{729 \, {\left (x^{8} - 16 \, x^{6} + 96 \, x^{4} - 256 \, x^{2} + 256\right )}} + \frac {15 \, x^{7} - 220 \, x^{5} + 1168 \, x^{3} + 960 \, x}{72 \, {\left (x^{8} - 16 \, x^{6} + 96 \, x^{4} - 256 \, x^{2} + 256\right )}} - \frac {725 \, {\left (3 \, x^{7} - 44 \, x^{5} - 176 \, x^{3} + 192 \, x\right )}}{5832 \, {\left (x^{8} - 16 \, x^{6} + 96 \, x^{4} - 256 \, x^{2} + 256\right )}} + \frac {4096 \, {\left (x^{6} - 6 \, x^{4} + 16 \, x^{2} - 16\right )}}{6561 \, {\left (x^{8} - 16 \, x^{6} + 96 \, x^{4} - 256 \, x^{2} + 256\right )}} + \frac {49664 \, {\left (3 \, x^{4} - 8 \, x^{2} + 8\right )}}{6561 \, {\left (x^{8} - 16 \, x^{6} + 96 \, x^{4} - 256 \, x^{2} + 256\right )}} + \frac {128 \, {\left (1458 \, x^{2} e^{\left (8 \, x\right )} + 324 \, {\left (4 \, x^{3} + 9 \, x^{2}\right )} e^{\left (6 \, x\right )} + 27 \, {\left (16 \, x^{4} + 72 \, x^{3} + 81 \, x^{2}\right )} e^{\left (4 \, x\right )} + {\left (64 \, x^{5} + 432 \, x^{4} + 972 \, x^{3} + 729 \, x^{2}\right )} e^{\left (2 \, x\right )}\right )}}{729 \, {\left (x^{8} - 16 \, x^{6} + 96 \, x^{4} - 256 \, x^{2} + 256\right )}} + \frac {5392 \, {\left (x^{2} - 1\right )}}{81 \, {\left (x^{8} - 16 \, x^{6} + 96 \, x^{4} - 256 \, x^{2} + 256\right )}} + \frac {16}{x^{8} - 16 \, x^{6} + 96 \, x^{4} - 256 \, x^{2} + 256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.46, size = 210, normalized size = 7.78 \begin {gather*} \frac {\frac {4096\,x^6}{6561}+\frac {4096\,x^5}{729}+\frac {512\,x^4}{27}+\frac {256\,x^3}{9}+16\,x^2}{x^8-16\,x^6+96\,x^4-256\,x^2+256}+\frac {{\mathrm {e}}^{2\,x}\,\left (\frac {8192\,x^5}{729}+\frac {2048\,x^4}{27}+\frac {512\,x^3}{3}+128\,x^2\right )}{x^8-16\,x^6+96\,x^4-256\,x^2+256}+\frac {{\mathrm {e}}^{6\,x}\,\left (\frac {2048\,x^3}{9}+512\,x^2\right )}{x^8-16\,x^6+96\,x^4-256\,x^2+256}+\frac {256\,x^2\,{\mathrm {e}}^{8\,x}}{x^8-16\,x^6+96\,x^4-256\,x^2+256}+\frac {{\mathrm {e}}^{4\,x}\,\left (\frac {2048\,x^4}{27}+\frac {1024\,x^3}{3}+384\,x^2\right )}{x^8-16\,x^6+96\,x^4-256\,x^2+256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.47, size = 631, normalized size = 23.37 \begin {gather*} \frac {\left (45349632 x^{26} - 2176782336 x^{24} + 47889211392 x^{22} - 638522818560 x^{20} + 5746705367040 x^{18} - 36778914349056 x^{16} + 171634933628928 x^{14} - 588462629584896 x^{12} + 1471156573962240 x^{10} - 2615389464821760 x^{8} + 3138467357786112 x^{6} - 2282521714753536 x^{4} + 760840571584512 x^{2}\right ) e^{8 x} + \left (40310784 x^{27} + 90699264 x^{26} - 1934917632 x^{25} - 4353564672 x^{24} + 42568187904 x^{23} + 95778422784 x^{22} - 567575838720 x^{21} - 1277045637120 x^{20} + 5108182548480 x^{19} + 11493410734080 x^{18} - 32692368310272 x^{17} - 73557828698112 x^{16} + 152564385447936 x^{15} + 343269867257856 x^{14} - 523077892964352 x^{13} - 1176925259169792 x^{12} + 1307694732410880 x^{11} + 2942313147924480 x^{10} - 2324790635397120 x^{9} - 5230778929643520 x^{8} + 2789748762476544 x^{7} + 6276934715572224 x^{6} - 2028908190892032 x^{5} - 4565043429507072 x^{4} + 676302730297344 x^{3} + 1521681143169024 x^{2}\right ) e^{6 x} + \left (13436928 x^{28} + 60466176 x^{27} - 576948096 x^{26} - 2902376448 x^{25} + 10924222464 x^{24} + 63852281856 x^{23} - 117358129152 x^{22} - 851363758080 x^{21} + 744943288320 x^{20} + 7662273822720 x^{19} - 2277398052864 x^{18} - 49038552465408 x^{17} - 4313576374272 x^{16} + 228846578171904 x^{15} + 83093102788608 x^{14} - 784616839446528 x^{13} - 446795700240384 x^{12} + 1961542098616320 x^{11} + 1431804649144320 x^{10} - 3487185953095680 x^{9} - 2993167943073792 x^{8} + 4184623143714816 x^{7} + 4031398306381824 x^{6} - 3043362286338048 x^{5} - 3198348328697856 x^{4} + 1014454095446016 x^{3} + 1141260857376768 x^{2}\right ) e^{4 x} + \left (1990656 x^{29} + 13436928 x^{28} - 65318400 x^{27} - 622297728 x^{26} + 650944512 x^{25} + 13101004800 x^{24} + 3897704448 x^{23} - 165247340544 x^{22} - 173425950720 x^{21} + 1383466106880 x^{20} + 2216698970112 x^{19} - 8024103419904 x^{18} - 16985232506880 x^{17} + 32465337974784 x^{16} + 88592282025984 x^{15} - 88541830840320 x^{14} - 327730902073344 x^{13} + 141666929344512 x^{12} + 865966573486080 x^{11} - 39351924817920 x^{10} - 1605827605561344 x^{9} - 377778478252032 x^{8} + 1992118574776320 x^{7} + 892930948595712 x^{6} - 1488283477475328 x^{5} - 915826613944320 x^{4} + 507227047723008 x^{3} + 380420285792256 x^{2}\right ) e^{2 x}}{177147 x^{32} - 11337408 x^{30} + 340122240 x^{28} - 6348948480 x^{26} + 82536330240 x^{24} - 792348770304 x^{22} + 5810557648896 x^{20} - 33203186565120 x^{18} + 149414339543040 x^{16} - 531250985041920 x^{14} + 1487502758117376 x^{12} - 3245460563165184 x^{10} + 5409100938608640 x^{8} - 6657355001364480 x^{6} + 5706304286883840 x^{4} - 3043362286338048 x^{2} + 760840571584512} - \frac {- 4096 x^{6} - 36864 x^{5} - 124416 x^{4} - 186624 x^{3} - 104976 x^{2}}{6561 x^{8} - 104976 x^{6} + 629856 x^{4} - 1679616 x^{2} + 1679616} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________