Optimal. Leaf size=24 \[ x \left (1+e^{4 x^2}+x-\log \left (\frac {1}{12} x \log ^2(x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 27, normalized size of antiderivative = 1.12, number of steps used = 15, number of rules used = 7, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {6742, 2226, 2204, 2212, 6688, 2298, 2549} \begin {gather*} x^2+e^{4 x^2} x+x-x \log \left (\frac {1}{12} x \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2204
Rule 2212
Rule 2226
Rule 2298
Rule 2549
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{4 x^2} \left (1+8 x^2\right )+\frac {-2+2 x \log (x)-\log (x) \log \left (\frac {1}{12} x \log ^2(x)\right )}{\log (x)}\right ) \, dx\\ &=\int e^{4 x^2} \left (1+8 x^2\right ) \, dx+\int \frac {-2+2 x \log (x)-\log (x) \log \left (\frac {1}{12} x \log ^2(x)\right )}{\log (x)} \, dx\\ &=\int \left (e^{4 x^2}+8 e^{4 x^2} x^2\right ) \, dx+\int \left (\frac {2 (-1+x \log (x))}{\log (x)}-\log \left (\frac {1}{12} x \log ^2(x)\right )\right ) \, dx\\ &=2 \int \frac {-1+x \log (x)}{\log (x)} \, dx+8 \int e^{4 x^2} x^2 \, dx+\int e^{4 x^2} \, dx-\int \log \left (\frac {1}{12} x \log ^2(x)\right ) \, dx\\ &=e^{4 x^2} x+\frac {1}{4} \sqrt {\pi } \text {erfi}(2 x)-x \log \left (\frac {1}{12} x \log ^2(x)\right )+2 \int \left (x-\frac {1}{\log (x)}\right ) \, dx-\int e^{4 x^2} \, dx+\int \left (1+\frac {2}{\log (x)}\right ) \, dx\\ &=x+e^{4 x^2} x+x^2-x \log \left (\frac {1}{12} x \log ^2(x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 27, normalized size = 1.12 \begin {gather*} x+e^{4 x^2} x+x^2-x \log \left (\frac {1}{12} x \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 24, normalized size = 1.00 \begin {gather*} x^{2} + x e^{\left (4 \, x^{2}\right )} - x \log \left (\frac {1}{12} \, x \log \relax (x)^{2}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 30, normalized size = 1.25 \begin {gather*} x^{2} + x e^{\left (4 \, x^{2}\right )} + x \log \left (12\right ) - x \log \left (\log \relax (x)^{2}\right ) - x \log \relax (x) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 28, normalized size = 1.17
method | result | size |
default | \(x \,{\mathrm e}^{4 x^{2}}+x^{2}+\ln \left (12\right ) x -\ln \left (x \ln \relax (x )^{2}\right ) x +x\) | \(28\) |
risch | \(-2 x \ln \left (\ln \relax (x )\right )-x \ln \relax (x )+\frac {i \pi \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{3} x}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \relax (x )^{2}\right )^{2} x}{2}-\frac {i \pi \,\mathrm {csgn}\left (i \ln \relax (x )^{2}\right ) \mathrm {csgn}\left (i x \ln \relax (x )^{2}\right )^{2} x}{2}+\frac {i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right ) \mathrm {csgn}\left (i x \ln \relax (x )^{2}\right ) x}{2}+\frac {i \pi \mathrm {csgn}\left (i \ln \relax (x )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )^{2}\right ) x}{2}-i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{2} x +\frac {i \pi \mathrm {csgn}\left (i x \ln \relax (x )^{2}\right )^{3} x}{2}+2 x \ln \relax (2)+x \ln \relax (3)+x^{2}+x +x \,{\mathrm e}^{4 x^{2}}\) | \(179\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{2} + x {\left (\log \relax (3) + 2 \, \log \relax (2) + 1\right )} + x e^{\left (4 \, x^{2}\right )} - x \log \relax (x) - 2 \, x \log \left (\log \relax (x)\right ) - 2 \, {\rm Ei}\left (\log \relax (x)\right ) + 2 \, \int \frac {1}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.37, size = 24, normalized size = 1.00 \begin {gather*} x-x\,\ln \left (\frac {x\,{\ln \relax (x)}^2}{12}\right )+x\,{\mathrm {e}}^{4\,x^2}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 24, normalized size = 1.00 \begin {gather*} x^{2} + x e^{4 x^{2}} - x \log {\left (\frac {x \log {\relax (x )}^{2}}{12} \right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________