Optimal. Leaf size=30 \[ -\log (5)-\frac {5-x}{x (-x+6 (4+x-\log (x)))} \]
________________________________________________________________________________________
Rubi [F] time = 0.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {90+56 x-5 x^2-30 \log (x)}{576 x^2+240 x^3+25 x^4+\left (-288 x^2-60 x^3\right ) \log (x)+36 x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {90+56 x-5 x^2-30 \log (x)}{x^2 (24+5 x-6 \log (x))^2} \, dx\\ &=\int \left (\frac {-30+31 x-5 x^2}{x^2 (24+5 x-6 \log (x))^2}+\frac {5}{x^2 (24+5 x-6 \log (x))}\right ) \, dx\\ &=5 \int \frac {1}{x^2 (24+5 x-6 \log (x))} \, dx+\int \frac {-30+31 x-5 x^2}{x^2 (24+5 x-6 \log (x))^2} \, dx\\ &=5 \int \frac {1}{x^2 (24+5 x-6 \log (x))} \, dx+\int \left (-\frac {5}{(24+5 x-6 \log (x))^2}-\frac {30}{x^2 (24+5 x-6 \log (x))^2}+\frac {31}{x (24+5 x-6 \log (x))^2}\right ) \, dx\\ &=-\left (5 \int \frac {1}{(24+5 x-6 \log (x))^2} \, dx\right )+5 \int \frac {1}{x^2 (24+5 x-6 \log (x))} \, dx-30 \int \frac {1}{x^2 (24+5 x-6 \log (x))^2} \, dx+31 \int \frac {1}{x (24+5 x-6 \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 20, normalized size = 0.67 \begin {gather*} \frac {5-x}{x (-24-5 x+6 \log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 20, normalized size = 0.67 \begin {gather*} \frac {x - 5}{5 \, x^{2} - 6 \, x \log \relax (x) + 24 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 4.44, size = 20, normalized size = 0.67 \begin {gather*} \frac {x - 5}{5 \, x^{2} - 6 \, x \log \relax (x) + 24 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.63
method | result | size |
norman | \(\frac {x -5}{x \left (-6 \ln \relax (x )+24+5 x \right )}\) | \(19\) |
risch | \(\frac {x -5}{x \left (-6 \ln \relax (x )+24+5 x \right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 20, normalized size = 0.67 \begin {gather*} \frac {x - 5}{5 \, x^{2} - 6 \, x \log \relax (x) + 24 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.36, size = 18, normalized size = 0.60 \begin {gather*} \frac {x-5}{x\,\left (5\,x-6\,\ln \relax (x)+24\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.57 \begin {gather*} \frac {5 - x}{- 5 x^{2} + 6 x \log {\relax (x )} - 24 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________