Optimal. Leaf size=26 \[ \log \left (x (1+2 x) \left (1-x+\frac {1}{2} e^{-5+e^4+x} x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+2 x-6 x^2+\frac {1}{2} e^{-5+e^4+x} \left (2 x+7 x^2+2 x^3\right )}{x+x^2-2 x^3+\frac {1}{2} e^{-5+e^4+x} \left (x^2+2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 e^5 \left (-1-x+x^2\right )}{x \left (-2 e^5+2 e^5 x-e^{e^4+x} x\right )}+\frac {2+7 x+2 x^2}{x (1+2 x)}\right ) \, dx\\ &=-\left (\left (2 e^5\right ) \int \frac {-1-x+x^2}{x \left (-2 e^5+2 e^5 x-e^{e^4+x} x\right )} \, dx\right )+\int \frac {2+7 x+2 x^2}{x (1+2 x)} \, dx\\ &=-\left (\left (2 e^5\right ) \int \left (-\frac {1}{-2 e^5+2 e^5 x-e^{e^4+x} x}-\frac {1}{x \left (-2 e^5+2 e^5 x-e^{e^4+x} x\right )}+\frac {x}{-2 e^5+2 e^5 x-e^{e^4+x} x}\right ) \, dx\right )+\int \left (1+\frac {2}{x}+\frac {2}{1+2 x}\right ) \, dx\\ &=x+2 \log (x)+\log (1+2 x)+\left (2 e^5\right ) \int \frac {1}{-2 e^5+2 e^5 x-e^{e^4+x} x} \, dx+\left (2 e^5\right ) \int \frac {1}{x \left (-2 e^5+2 e^5 x-e^{e^4+x} x\right )} \, dx-\left (2 e^5\right ) \int \frac {x}{-2 e^5+2 e^5 x-e^{e^4+x} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 29, normalized size = 1.12 \begin {gather*} \log (x)+\log (1+2 x)+\log \left (2 e^5 (-1+x)-e^{e^4+x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 33, normalized size = 1.27 \begin {gather*} \log \left (2 \, x + 1\right ) + 2 \, \log \relax (x) + \log \left (\frac {x e^{\left (x + e^{4} - \log \relax (2) - 5\right )} - x + 1}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 23, normalized size = 0.88 \begin {gather*} \log \left (x e^{\left (x + e^{4} - 5\right )} - 2 \, x + 2\right ) + \log \left (2 \, x + 1\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.63, size = 28, normalized size = 1.08
method | result | size |
norman | \(\ln \relax (x )+\ln \left (2 x +1\right )+\ln \left (x \,{\mathrm e}^{-\ln \relax (2)+{\mathrm e}^{4}+x -5}-x +1\right )\) | \(28\) |
risch | \(2 \ln \relax (x )+\ln \left (2 x +1\right )+\ln \relax (2)-{\mathrm e}^{4}+5+\ln \left (\frac {{\mathrm e}^{-5+{\mathrm e}^{4}+x}}{2}-\frac {x -1}{x}\right )\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 40, normalized size = 1.54 \begin {gather*} \log \left (2 \, x + 1\right ) + 2 \, \log \relax (x) + \log \left (-\frac {{\left (2 \, x e^{5} - x e^{\left (x + e^{4}\right )} - 2 \, e^{5}\right )} e^{\left (-e^{4}\right )}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.16, size = 23, normalized size = 0.88 \begin {gather*} \ln \left (x+\frac {1}{2}\right )+\ln \left (\frac {x\,{\mathrm {e}}^{-5}\,{\mathrm {e}}^{{\mathrm {e}}^4}\,{\mathrm {e}}^x}{2}-x+1\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 27, normalized size = 1.04 \begin {gather*} 2 \log {\relax (x )} + \log {\left (x + \frac {1}{2} \right )} + \log {\left (e^{x - 5 + e^{4}} + \frac {2 - 2 x}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________