Optimal. Leaf size=18 \[ \frac {3}{1-\frac {\log (x)}{\sqrt [5]{e} x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {6688, 12, 6711, 32} \begin {gather*} -\frac {3}{1-\frac {\sqrt [5]{e} x}{\log (x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \sqrt [5]{e} (1-\log (x))}{\left (\sqrt [5]{e} x-\log (x)\right )^2} \, dx\\ &=\left (3 \sqrt [5]{e}\right ) \int \frac {1-\log (x)}{\left (\sqrt [5]{e} x-\log (x)\right )^2} \, dx\\ &=-\left (\left (3 \sqrt [5]{e}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-1+\sqrt [5]{e} x\right )^2} \, dx,x,\frac {x}{\log (x)}\right )\right )\\ &=-\frac {3}{1-\frac {\sqrt [5]{e} x}{\log (x)}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 21, normalized size = 1.17 \begin {gather*} -\frac {3 \sqrt [5]{e} x}{-\sqrt [5]{e} x+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 16, normalized size = 0.89 \begin {gather*} \frac {3 \, x e^{\frac {1}{5}}}{x e^{\frac {1}{5}} - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 16, normalized size = 0.89 \begin {gather*} \frac {3 \, x e^{\frac {1}{5}}}{x e^{\frac {1}{5}} - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 17, normalized size = 0.94
method | result | size |
norman | \(\frac {3 \,{\mathrm e}^{\frac {1}{5}} x}{x \,{\mathrm e}^{\frac {1}{5}}-\ln \relax (x )}\) | \(17\) |
risch | \(\frac {3 \,{\mathrm e}^{\frac {1}{5}} x}{x \,{\mathrm e}^{\frac {1}{5}}-\ln \relax (x )}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 18, normalized size = 1.00 \begin {gather*} \frac {3 \, x e^{\frac {2}{5}}}{x e^{\frac {2}{5}} - e^{\frac {1}{5}} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.31, size = 15, normalized size = 0.83 \begin {gather*} -\frac {3\,x\,{\mathrm {e}}^{1/5}}{\ln \relax (x)-x\,{\mathrm {e}}^{1/5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 19, normalized size = 1.06 \begin {gather*} - \frac {3 x e^{\frac {1}{5}}}{- x e^{\frac {1}{5}} + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________