Optimal. Leaf size=27 \[ 1+e^{5 \left (2-\frac {4 \left (3-2 e^x-x\right )}{x}+x\right )}-x \]
________________________________________________________________________________________
Rubi [F] time = 0.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2+e^{\frac {-60+40 e^x+30 x+5 x^2}{x}} \left (60+5 x^2+e^x (-40+40 x)\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+\frac {40 e^{\frac {2 \left (-30+20 e^x+15 x+3 x^2\right )}{x}} (-1+x)}{x^2}+\frac {5 e^{\frac {5 \left (-12+8 e^x+6 x+x^2\right )}{x}} \left (12+x^2\right )}{x^2}\right ) \, dx\\ &=-x+5 \int \frac {e^{\frac {5 \left (-12+8 e^x+6 x+x^2\right )}{x}} \left (12+x^2\right )}{x^2} \, dx+40 \int \frac {e^{\frac {2 \left (-30+20 e^x+15 x+3 x^2\right )}{x}} (-1+x)}{x^2} \, dx\\ &=-x+5 \int \left (e^{\frac {5 \left (-12+8 e^x+6 x+x^2\right )}{x}}+\frac {12 e^{\frac {5 \left (-12+8 e^x+6 x+x^2\right )}{x}}}{x^2}\right ) \, dx+40 \int \left (-\frac {e^{\frac {2 \left (-30+20 e^x+15 x+3 x^2\right )}{x}}}{x^2}+\frac {e^{\frac {2 \left (-30+20 e^x+15 x+3 x^2\right )}{x}}}{x}\right ) \, dx\\ &=-x+5 \int e^{\frac {5 \left (-12+8 e^x+6 x+x^2\right )}{x}} \, dx-40 \int \frac {e^{\frac {2 \left (-30+20 e^x+15 x+3 x^2\right )}{x}}}{x^2} \, dx+40 \int \frac {e^{\frac {2 \left (-30+20 e^x+15 x+3 x^2\right )}{x}}}{x} \, dx+60 \int \frac {e^{\frac {5 \left (-12+8 e^x+6 x+x^2\right )}{x}}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 24, normalized size = 0.89 \begin {gather*} e^{30-\frac {60}{x}+\frac {40 e^x}{x}+5 x}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 22, normalized size = 0.81 \begin {gather*} -x + e^{\left (\frac {5 \, {\left (x^{2} + 6 \, x + 8 \, e^{x} - 12\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 22, normalized size = 0.81 \begin {gather*} -x + e^{\left (\frac {5 \, {\left (x^{2} + 6 \, x + 8 \, e^{x} - 12\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 23, normalized size = 0.85
method | result | size |
risch | \(-x +{\mathrm e}^{\frac {40 \,{\mathrm e}^{x}+5 x^{2}+30 x -60}{x}}\) | \(23\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {40 \,{\mathrm e}^{x}+5 x^{2}+30 x -60}{x}}-x^{2}}{x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 22, normalized size = 0.81 \begin {gather*} -x + e^{\left (5 \, x + \frac {40 \, e^{x}}{x} - \frac {60}{x} + 30\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.26, size = 25, normalized size = 0.93 \begin {gather*} {\mathrm {e}}^{5\,x}\,{\mathrm {e}}^{30}\,{\mathrm {e}}^{\frac {40\,{\mathrm {e}}^x}{x}}\,{\mathrm {e}}^{-\frac {60}{x}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 19, normalized size = 0.70 \begin {gather*} - x + e^{\frac {5 x^{2} + 30 x + 40 e^{x} - 60}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________