Optimal. Leaf size=30 \[ \left (-5+\frac {3}{x}\right )^2+\frac {9}{3-\frac {e^x}{x}}-\log \left (x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-162 x^2+270 x^3-18 x^4+e^{2 x} \left (-18+30 x-2 x^2\right )+e^x \left (108 x-180 x^2+3 x^3+9 x^4\right )}{e^{2 x} x^3-6 e^x x^4+9 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-162 x^2+270 x^3-18 x^4+e^{2 x} \left (-18+30 x-2 x^2\right )+e^x \left (108 x-180 x^2+3 x^3+9 x^4\right )}{\left (e^x-3 x\right )^2 x^3} \, dx\\ &=\int \left (\frac {9 (-1+x)}{e^x-3 x}+\frac {27 (-1+x) x}{\left (e^x-3 x\right )^2}-\frac {2 \left (9-15 x+x^2\right )}{x^3}\right ) \, dx\\ &=-\left (2 \int \frac {9-15 x+x^2}{x^3} \, dx\right )+9 \int \frac {-1+x}{e^x-3 x} \, dx+27 \int \frac {(-1+x) x}{\left (e^x-3 x\right )^2} \, dx\\ &=-\left (2 \int \left (\frac {9}{x^3}-\frac {15}{x^2}+\frac {1}{x}\right ) \, dx\right )+9 \int \left (-\frac {1}{e^x-3 x}+\frac {x}{e^x-3 x}\right ) \, dx+27 \int \left (-\frac {x}{\left (e^x-3 x\right )^2}+\frac {x^2}{\left (e^x-3 x\right )^2}\right ) \, dx\\ &=\frac {9}{x^2}-\frac {30}{x}-2 \log (x)-9 \int \frac {1}{e^x-3 x} \, dx+9 \int \frac {x}{e^x-3 x} \, dx-27 \int \frac {x}{\left (e^x-3 x\right )^2} \, dx+27 \int \frac {x^2}{\left (e^x-3 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 27, normalized size = 0.90 \begin {gather*} \frac {9}{x^2}-\frac {30}{x}-\frac {9 x}{e^x-3 x}-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 56, normalized size = 1.87 \begin {gather*} \frac {9 \, x^{3} - 90 \, x^{2} + 3 \, {\left (10 \, x - 3\right )} e^{x} - 2 \, {\left (3 \, x^{3} - x^{2} e^{x}\right )} \log \relax (x) + 27 \, x}{3 \, x^{3} - x^{2} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 56, normalized size = 1.87 \begin {gather*} -\frac {6 \, x^{3} \log \relax (x) - 2 \, x^{2} e^{x} \log \relax (x) - 9 \, x^{3} + 90 \, x^{2} - 30 \, x e^{x} - 27 \, x + 9 \, e^{x}}{3 \, x^{3} - x^{2} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 28, normalized size = 0.93
method | result | size |
risch | \(\frac {-30 x +9}{x^{2}}-2 \ln \relax (x )+\frac {9 x}{3 x -{\mathrm e}^{x}}\) | \(28\) |
norman | \(\frac {9 x^{3}+27 x -90 x^{2}+30 \,{\mathrm e}^{x} x -9 \,{\mathrm e}^{x}}{x^{2} \left (3 x -{\mathrm e}^{x}\right )}-2 \ln \relax (x )\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 44, normalized size = 1.47 \begin {gather*} \frac {3 \, {\left (3 \, x^{3} - 30 \, x^{2} + {\left (10 \, x - 3\right )} e^{x} + 9 \, x\right )}}{3 \, x^{3} - x^{2} e^{x}} - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.54, size = 34, normalized size = 1.13 \begin {gather*} \frac {9}{x^2}-\frac {9\,x^3}{x^2\,{\mathrm {e}}^x-3\,x^3}-\frac {30}{x}-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 0.80 \begin {gather*} - \frac {9 x}{- 3 x + e^{x}} - 2 \log {\relax (x )} - \frac {30 x - 9}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________