Optimal. Leaf size=32 \[ 3-x+x^2 (16+x)^2 \left (1+\frac {x}{-e^x+\frac {x}{\log (x)}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2+768 x^3+128 x^4+5 x^5+\left (512 x^3+96 x^4+4 x^5+e^x \left (2 x-1024 x^2-192 x^3-8 x^4\right )\right ) \log (x)+\left (e^{2 x} \left (-1+512 x+96 x^2+4 x^3\right )+e^x \left (-768 x^2+128 x^3+27 x^4+x^5\right )\right ) \log ^2(x)}{x^2-2 e^x x \log (x)+e^{2 x} \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x^2+768 x^3+128 x^4+5 x^5+\left (512 x^3+96 x^4+4 x^5+e^x \left (2 x-1024 x^2-192 x^3-8 x^4\right )\right ) \log (x)+\left (e^{2 x} \left (-1+512 x+96 x^2+4 x^3\right )+e^x \left (-768 x^2+128 x^3+27 x^4+x^5\right )\right ) \log ^2(x)}{\left (x-e^x \log (x)\right )^2} \, dx\\ &=\int \left (-1+512 x+96 x^2+4 x^3-\frac {x^2 \left (-768+128 x+27 x^2+x^3\right ) \log (x)}{x-e^x \log (x)}+\frac {x^3 (16+x)^2 (1-\log (x)+x \log (x))}{\left (x-e^x \log (x)\right )^2}\right ) \, dx\\ &=-x+256 x^2+32 x^3+x^4-\int \frac {x^2 \left (-768+128 x+27 x^2+x^3\right ) \log (x)}{x-e^x \log (x)} \, dx+\int \frac {x^3 (16+x)^2 (1-\log (x)+x \log (x))}{\left (x-e^x \log (x)\right )^2} \, dx\\ &=-x+256 x^2+32 x^3+x^4-\int \left (-\frac {768 x^2 \log (x)}{x-e^x \log (x)}+\frac {128 x^3 \log (x)}{x-e^x \log (x)}+\frac {27 x^4 \log (x)}{x-e^x \log (x)}+\frac {x^5 \log (x)}{x-e^x \log (x)}\right ) \, dx+\int \left (\frac {256 x^3 (1-\log (x)+x \log (x))}{\left (x-e^x \log (x)\right )^2}+\frac {32 x^4 (1-\log (x)+x \log (x))}{\left (x-e^x \log (x)\right )^2}+\frac {x^5 (1-\log (x)+x \log (x))}{\left (x-e^x \log (x)\right )^2}\right ) \, dx\\ &=-x+256 x^2+32 x^3+x^4-27 \int \frac {x^4 \log (x)}{x-e^x \log (x)} \, dx+32 \int \frac {x^4 (1-\log (x)+x \log (x))}{\left (x-e^x \log (x)\right )^2} \, dx-128 \int \frac {x^3 \log (x)}{x-e^x \log (x)} \, dx+256 \int \frac {x^3 (1-\log (x)+x \log (x))}{\left (x-e^x \log (x)\right )^2} \, dx+768 \int \frac {x^2 \log (x)}{x-e^x \log (x)} \, dx-\int \frac {x^5 \log (x)}{x-e^x \log (x)} \, dx+\int \frac {x^5 (1-\log (x)+x \log (x))}{\left (x-e^x \log (x)\right )^2} \, dx\\ &=-x+256 x^2+32 x^3+x^4-27 \int \frac {x^4 \log (x)}{x-e^x \log (x)} \, dx+32 \int \left (\frac {x^4}{\left (x-e^x \log (x)\right )^2}-\frac {x^4 \log (x)}{\left (x-e^x \log (x)\right )^2}+\frac {x^5 \log (x)}{\left (x-e^x \log (x)\right )^2}\right ) \, dx-128 \int \frac {x^3 \log (x)}{x-e^x \log (x)} \, dx+256 \int \left (\frac {x^3}{\left (x-e^x \log (x)\right )^2}-\frac {x^3 \log (x)}{\left (x-e^x \log (x)\right )^2}+\frac {x^4 \log (x)}{\left (x-e^x \log (x)\right )^2}\right ) \, dx+768 \int \frac {x^2 \log (x)}{x-e^x \log (x)} \, dx-\int \frac {x^5 \log (x)}{x-e^x \log (x)} \, dx+\int \left (\frac {x^5}{\left (x-e^x \log (x)\right )^2}-\frac {x^5 \log (x)}{\left (x-e^x \log (x)\right )^2}+\frac {x^6 \log (x)}{\left (x-e^x \log (x)\right )^2}\right ) \, dx\\ &=-x+256 x^2+32 x^3+x^4-27 \int \frac {x^4 \log (x)}{x-e^x \log (x)} \, dx+32 \int \frac {x^4}{\left (x-e^x \log (x)\right )^2} \, dx-32 \int \frac {x^4 \log (x)}{\left (x-e^x \log (x)\right )^2} \, dx+32 \int \frac {x^5 \log (x)}{\left (x-e^x \log (x)\right )^2} \, dx-128 \int \frac {x^3 \log (x)}{x-e^x \log (x)} \, dx+256 \int \frac {x^3}{\left (x-e^x \log (x)\right )^2} \, dx-256 \int \frac {x^3 \log (x)}{\left (x-e^x \log (x)\right )^2} \, dx+256 \int \frac {x^4 \log (x)}{\left (x-e^x \log (x)\right )^2} \, dx+768 \int \frac {x^2 \log (x)}{x-e^x \log (x)} \, dx+\int \frac {x^5}{\left (x-e^x \log (x)\right )^2} \, dx-\int \frac {x^5 \log (x)}{\left (x-e^x \log (x)\right )^2} \, dx+\int \frac {x^6 \log (x)}{\left (x-e^x \log (x)\right )^2} \, dx-\int \frac {x^5 \log (x)}{x-e^x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 60, normalized size = 1.88 \begin {gather*} \frac {x \left (x \left (-1+256 x+32 x^2+x^3\right )+\left (x^2 (16+x)^2-e^x \left (-1+256 x+32 x^2+x^3\right )\right ) \log (x)\right )}{x-e^x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 70, normalized size = 2.19 \begin {gather*} -\frac {x^{5} + 32 \, x^{4} + 256 \, x^{3} - x^{2} + {\left (x^{5} + 32 \, x^{4} + 256 \, x^{3} - {\left (x^{4} + 32 \, x^{3} + 256 \, x^{2} - x\right )} e^{x}\right )} \log \relax (x)}{e^{x} \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 85, normalized size = 2.66 \begin {gather*} -\frac {x^{5} \log \relax (x) - x^{4} e^{x} \log \relax (x) + x^{5} + 32 \, x^{4} \log \relax (x) - 32 \, x^{3} e^{x} \log \relax (x) + 32 \, x^{4} + 256 \, x^{3} \log \relax (x) - 256 \, x^{2} e^{x} \log \relax (x) + 256 \, x^{3} + x e^{x} \log \relax (x) - x^{2}}{e^{x} \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 70, normalized size = 2.19
method | result | size |
risch | \(-x \left (x^{4}-{\mathrm e}^{x} x^{3}+32 x^{3}-32 \,{\mathrm e}^{x} x^{2}+256 x^{2}-256 \,{\mathrm e}^{x} x +{\mathrm e}^{x}\right ) {\mathrm e}^{-x}+\frac {\left (x^{2}+32 x +256\right ) x^{4} {\mathrm e}^{-x}}{-{\mathrm e}^{x} \ln \relax (x )+x}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 72, normalized size = 2.25 \begin {gather*} -\frac {x^{5} + 32 \, x^{4} + 256 \, x^{3} - {\left (x^{4} + 32 \, x^{3} + 256 \, x^{2} - x\right )} e^{x} \log \relax (x) - x^{2} + {\left (x^{5} + 32 \, x^{4} + 256 \, x^{3}\right )} \log \relax (x)}{e^{x} \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.46, size = 109, normalized size = 3.41 \begin {gather*} 256\,x^2-{\mathrm {e}}^{-x}\,\left (x^5+32\,x^4+256\,x^3\right )-x+32\,x^3+x^4+\frac {256\,x^5\,{\mathrm {e}}^x+32\,x^6\,{\mathrm {e}}^x+x^7\,{\mathrm {e}}^x-256\,x^6+224\,x^7+31\,x^8+x^9}{\left (x-{\mathrm {e}}^x\,\ln \relax (x)\right )\,\left (x\,{\mathrm {e}}^{2\,x}-x^2\,{\mathrm {e}}^x+x^3\,{\mathrm {e}}^x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.31, size = 48, normalized size = 1.50 \begin {gather*} x^{4} + 32 x^{3} + 256 x^{2} - x + \frac {- x^{5} \log {\relax (x )} - 32 x^{4} \log {\relax (x )} - 256 x^{3} \log {\relax (x )}}{- x + e^{x} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________