Optimal. Leaf size=29 \[ \left (3+x-\frac {6-x^2 \left (\frac {1}{5}-\log \left (\frac {4}{x}\right )\right )}{x}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.07, antiderivative size = 68, normalized size of antiderivative = 2.34, number of steps used = 9, number of rules used = 5, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {12, 14, 2313, 2305, 2304} \begin {gather*} \frac {36 x^2}{25}+\frac {36}{x^2}+x^2 \log ^2\left (\frac {4}{x}\right )+x^2 \log \left (\frac {4}{x}\right )-\frac {1}{5} \left (17 x^2+30 x\right ) \log \left (\frac {4}{x}\right )+\frac {36 x}{5}-\frac {36}{x}-12 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rule 2305
Rule 2313
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \frac {-1800+900 x-300 x^2+330 x^3+132 x^4+\left (-150 x^3-170 x^4\right ) \log \left (\frac {4}{x}\right )+50 x^4 \log ^2\left (\frac {4}{x}\right )}{x^3} \, dx\\ &=\frac {1}{25} \int \left (\frac {6 \left (-300+150 x-50 x^2+55 x^3+22 x^4\right )}{x^3}-10 (15+17 x) \log \left (\frac {4}{x}\right )+50 x \log ^2\left (\frac {4}{x}\right )\right ) \, dx\\ &=\frac {6}{25} \int \frac {-300+150 x-50 x^2+55 x^3+22 x^4}{x^3} \, dx-\frac {2}{5} \int (15+17 x) \log \left (\frac {4}{x}\right ) \, dx+2 \int x \log ^2\left (\frac {4}{x}\right ) \, dx\\ &=-\frac {1}{5} \left (30 x+17 x^2\right ) \log \left (\frac {4}{x}\right )+x^2 \log ^2\left (\frac {4}{x}\right )+\frac {6}{25} \int \left (55-\frac {300}{x^3}+\frac {150}{x^2}-\frac {50}{x}+22 x\right ) \, dx-\frac {2}{5} \int \left (15+\frac {17 x}{2}\right ) \, dx+2 \int x \log \left (\frac {4}{x}\right ) \, dx\\ &=\frac {36}{x^2}-\frac {36}{x}+\frac {36 x}{5}+\frac {36 x^2}{25}+x^2 \log \left (\frac {4}{x}\right )-\frac {1}{5} \left (30 x+17 x^2\right ) \log \left (\frac {4}{x}\right )+x^2 \log ^2\left (\frac {4}{x}\right )-12 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.02, size = 61, normalized size = 2.10 \begin {gather*} \frac {36}{x^2}-\frac {36}{x}+\frac {36 x}{5}+\frac {36 x^2}{25}-6 x \log \left (\frac {4}{x}\right )-\frac {12}{5} x^2 \log \left (\frac {4}{x}\right )+x^2 \log ^2\left (\frac {4}{x}\right )-12 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 57, normalized size = 1.97 \begin {gather*} \frac {25 \, x^{4} \log \left (\frac {4}{x}\right )^{2} + 36 \, x^{4} + 180 \, x^{3} - 30 \, {\left (2 \, x^{4} + 5 \, x^{3} - 10 \, x^{2}\right )} \log \left (\frac {4}{x}\right ) - 900 \, x + 900}{25 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 61, normalized size = 2.10 \begin {gather*} -\frac {6}{5} \, x^{2} {\left (\frac {5}{x} + 2\right )} \log \left (\frac {4}{x}\right ) + x^{2} \log \left (\frac {4}{x}\right )^{2} + \frac {36}{25} \, x^{2} {\left (\frac {5}{x} + 1\right )} - \frac {36}{x} + \frac {36}{x^{2}} + 12 \, \log \left (\frac {4}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 58, normalized size = 2.00
method | result | size |
risch | \(x^{2} \ln \left (\frac {4}{x}\right )^{2}+\frac {\left (-60 x^{2}-150 x \right ) \ln \left (\frac {4}{x}\right )}{25}-\frac {12 \left (-3 x^{4}+25 x^{2} \ln \relax (x )-15 x^{3}+75 x -75\right )}{25 x^{2}}\) | \(58\) |
derivativedivides | \(\frac {36}{x^{2}}-\frac {36}{x}+x^{2} \ln \left (\frac {4}{x}\right )^{2}-\frac {12 x^{2} \ln \left (\frac {4}{x}\right )}{5}+\frac {36 x^{2}}{25}-6 x \ln \left (\frac {4}{x}\right )+\frac {36 x}{5}+12 \ln \left (\frac {4}{x}\right )\) | \(60\) |
default | \(\frac {36}{x^{2}}-\frac {36}{x}+x^{2} \ln \left (\frac {4}{x}\right )^{2}-\frac {12 x^{2} \ln \left (\frac {4}{x}\right )}{5}+\frac {36 x^{2}}{25}-6 x \ln \left (\frac {4}{x}\right )+\frac {36 x}{5}+12 \ln \left (\frac {4}{x}\right )\) | \(60\) |
norman | \(\frac {36+x^{4} \ln \left (\frac {4}{x}\right )^{2}+12 x^{2} \ln \left (\frac {4}{x}\right )-36 x +\frac {36 x^{3}}{5}+\frac {36 x^{4}}{25}-6 x^{3} \ln \left (\frac {4}{x}\right )-\frac {12 x^{4} \ln \left (\frac {4}{x}\right )}{5}}{x^{2}}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 55, normalized size = 1.90 \begin {gather*} x^{2} \log \left (\frac {4}{x}\right )^{2} - \frac {12}{5} \, x^{2} \log \left (\frac {4}{x}\right ) + \frac {36}{25} \, x^{2} - 6 \, x \log \left (\frac {4}{x}\right ) + \frac {36}{5} \, x - \frac {36}{x} + \frac {36}{x^{2}} - 12 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.11, size = 55, normalized size = 1.90 \begin {gather*} 12\,\ln \left (\frac {1}{x}\right )-x\,\left (6\,\ln \left (\frac {4}{x}\right )-\frac {36}{5}\right )+x^2\,\left ({\ln \left (\frac {4}{x}\right )}^2-\frac {12\,\ln \left (\frac {4}{x}\right )}{5}+\frac {36}{25}\right )+\frac {36\,x-36\,x^2}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 53, normalized size = 1.83 \begin {gather*} x^{2} \log {\left (\frac {4}{x} \right )}^{2} + \frac {36 x^{2}}{25} + \frac {36 x}{5} + \left (- \frac {12 x^{2}}{5} - 6 x\right ) \log {\left (\frac {4}{x} \right )} - 12 \log {\relax (x )} + \frac {900 - 900 x}{25 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________