Optimal. Leaf size=23 \[ -e^x+e^x \left (4+e^{\frac {e^8 x}{2}}\right )+x \]
________________________________________________________________________________________
Rubi [B] time = 0.41, antiderivative size = 50, normalized size of antiderivative = 2.17, number of steps used = 5, number of rules used = 2, integrand size = 97, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {6688, 2194} \begin {gather*} x+3 e^x+\frac {2 e^{\frac {1}{2} \left (2+e^8\right ) x}}{2+e^8}+\frac {e^{\frac {1}{2} \left (2+e^8\right ) x+8}}{2+e^8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+3 e^x+e^{\frac {1}{2} \left (2+e^8\right ) x}+\frac {1}{2} e^{8+\frac {1}{2} \left (2+e^8\right ) x}\right ) \, dx\\ &=x+\frac {1}{2} \int e^{8+\frac {1}{2} \left (2+e^8\right ) x} \, dx+3 \int e^x \, dx+\int e^{\frac {1}{2} \left (2+e^8\right ) x} \, dx\\ &=3 e^x+\frac {2 e^{\frac {1}{2} \left (2+e^8\right ) x}}{2+e^8}+\frac {e^{8+\frac {1}{2} \left (2+e^8\right ) x}}{2+e^8}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.83 \begin {gather*} 3 e^x+e^{\frac {1}{2} \left (2+e^8\right ) x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.18, size = 44, normalized size = 1.91 \begin {gather*} {\left ({\left (x + 3 \, e^{x}\right )} e^{\left (\log \relax (2) - 8\right )} + e^{\left ({\left ({\left (\log \relax (2) - 8\right )} e^{\left (\log \relax (2) - 8\right )} + x\right )} e^{\left (-\log \relax (2) + 8\right )} + x\right )}\right )} e^{\left (-\log \relax (2) + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 14, normalized size = 0.61 \begin {gather*} x + e^{\left (\frac {1}{2} \, x e^{8} + x\right )} + 3 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 15, normalized size = 0.65
method | result | size |
risch | \({\mathrm e}^{\frac {x \left (2+{\mathrm e}^{8}\right )}{2}}+x +3 \,{\mathrm e}^{x}\) | \(15\) |
default | \(x +{\mathrm e}^{\ln \left ({\mathrm e}^{\frac {x \,{\mathrm e}^{8}}{2}}+4\right )+x}-{\mathrm e}^{x}\) | \(23\) |
norman | \(x +\frac {{\mathrm e}^{-8} \left (2+{\mathrm e}^{8}\right ) {\mathrm e}^{x} {\mathrm e}^{\frac {x \,{\mathrm e}^{8}}{2}}}{2 \,{\mathrm e}^{-8}+1}+3 \,{\mathrm e}^{x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.97, size = 41, normalized size = 1.78 \begin {gather*} {\left (e^{\left (\frac {1}{2} \, x e^{8} + 16 \, e^{\left (-8\right )} + 8\right )} + 3 \, e^{\left (16 \, e^{\left (-8\right )} + 8\right )}\right )} e^{\left ({\left (x e^{8} - 16\right )} e^{\left (-8\right )} - 8\right )} + x - 16 \, e^{\left (-8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 14, normalized size = 0.61 \begin {gather*} x+{\mathrm {e}}^{x+\frac {x\,{\mathrm {e}}^8}{2}}+3\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 17, normalized size = 0.74 \begin {gather*} x + e^{x} e^{\frac {x e^{8}}{2}} + 3 e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________