Optimal. Leaf size=22 \[ 3+5 e^{-e^x+\left (2 e^x+x\right )^2}+x \]
________________________________________________________________________________________
Rubi [F] time = 1.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{4 e^{2 x}-e^x (1-4 x)+x^2} \left (40 e^{2 x}+e^{-4 e^{2 x}+e^x (1-4 x)-x^2}+10 x+e^x (15+20 x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+40 e^{4 e^{2 x}-e^x (1-4 x)+2 x+x^2}+10 e^{4 e^{2 x}-e^x (1-4 x)+x^2} x+5 e^{4 e^{2 x}-e^x (1-4 x)+x+x^2} (3+4 x)\right ) \, dx\\ &=x+5 \int e^{4 e^{2 x}-e^x (1-4 x)+x+x^2} (3+4 x) \, dx+10 \int e^{4 e^{2 x}-e^x (1-4 x)+x^2} x \, dx+40 \int e^{4 e^{2 x}-e^x (1-4 x)+2 x+x^2} \, dx\\ &=x+5 \int \left (3 e^{4 e^{2 x}-e^x (1-4 x)+x+x^2}+4 e^{4 e^{2 x}-e^x (1-4 x)+x+x^2} x\right ) \, dx+10 \int e^{4 e^{2 x}-e^x (1-4 x)+x^2} x \, dx+40 \int e^{4 e^{2 x}-e^x (1-4 x)+2 x+x^2} \, dx\\ &=x+10 \int e^{4 e^{2 x}-e^x (1-4 x)+x^2} x \, dx+15 \int e^{4 e^{2 x}-e^x (1-4 x)+x+x^2} \, dx+20 \int e^{4 e^{2 x}-e^x (1-4 x)+x+x^2} x \, dx+40 \int e^{4 e^{2 x}-e^x (1-4 x)+2 x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.60, size = 26, normalized size = 1.18 \begin {gather*} 5 e^{4 e^{2 x}+x^2+e^x (-1+4 x)}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 23, normalized size = 1.05 \begin {gather*} x + 5 \, e^{\left (x^{2} + {\left (4 \, x - 1\right )} e^{x} + 4 \, e^{\left (2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 24, normalized size = 1.09 \begin {gather*} x + 5 \, e^{\left (x^{2} + 4 \, x e^{x} + 4 \, e^{\left (2 \, x\right )} - e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 25, normalized size = 1.14
method | result | size |
risch | \(x +5 \,{\mathrm e}^{4 \,{\mathrm e}^{x} x +x^{2}-{\mathrm e}^{x}+4 \,{\mathrm e}^{2 x}}\) | \(25\) |
norman | \(\left (5+x \,{\mathrm e}^{-4 \,{\mathrm e}^{2 x}+\left (-4 x +1\right ) {\mathrm e}^{x}-x^{2}}\right ) {\mathrm e}^{4 \,{\mathrm e}^{2 x}-\left (-4 x +1\right ) {\mathrm e}^{x}+x^{2}}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 24, normalized size = 1.09 \begin {gather*} x + 5 \, e^{\left (x^{2} + 4 \, x e^{x} + 4 \, e^{\left (2 \, x\right )} - e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 26, normalized size = 1.18 \begin {gather*} x+5\,{\mathrm {e}}^{4\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 22, normalized size = 1.00 \begin {gather*} x + 5 e^{x^{2} - \left (1 - 4 x\right ) e^{x} + 4 e^{2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________