Optimal. Leaf size=32 \[ \frac {3 \left (2+e^x-x-x^2\right )}{-x+e^{x/5} (3+x)} \]
________________________________________________________________________________________
Rubi [F] time = 4.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {90+30 x+45 x^2+15 x^3+e^x \left (45-30 x-15 x^2\right )+e^{\frac {1}{5} (x+5 \log (3+x))} \left (-93-87 x-3 x^2+3 x^3+e^x (21+12 x)\right )}{15 x^2+5 x^3+e^{\frac {2}{5} (x+5 \log (3+x))} (15+5 x)+e^{\frac {1}{5} (x+5 \log (3+x))} \left (-30 x-10 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (-5 e^x (-1+x)+e^{6 x/5} (7+4 x)+5 \left (2+x^2\right )+e^{x/5} \left (-31-29 x-x^2+x^3\right )\right )}{5 \left (x-e^{x/5} (3+x)\right )^2} \, dx\\ &=\frac {3}{5} \int \frac {-5 e^x (-1+x)+e^{6 x/5} (7+4 x)+5 \left (2+x^2\right )+e^{x/5} \left (-31-29 x-x^2+x^3\right )}{\left (x-e^{x/5} (3+x)\right )^2} \, dx\\ &=\frac {3}{5} \int \left (-\frac {5 (-12+x) x^3}{(3+x)^6}+\frac {e^{4 x/5} (7+4 x)}{(3+x)^2}+\frac {e^{x/5} x^2 \left (45-2 x+x^2\right )}{(3+x)^5}+\frac {e^{2 x/5} x \left (30+x+2 x^2\right )}{(3+x)^4}+\frac {e^{3 x/5} \left (15+4 x+3 x^2\right )}{(3+x)^3}+\frac {-7533-19602 x-20358 x^2-10782 x^3-2865 x^4-294 x^5+45 x^6+14 x^7+x^8}{(3+x)^6 \left (3 e^{x/5}-x+e^{x/5} x\right )}+\frac {7290+7047 x-3807 x^2-7668 x^3-3357 x^4-45 x^5+396 x^6+135 x^7+19 x^8+x^9}{(3+x)^6 \left (3 e^{x/5}-x+e^{x/5} x\right )^2}\right ) \, dx\\ &=\frac {3}{5} \int \frac {e^{4 x/5} (7+4 x)}{(3+x)^2} \, dx+\frac {3}{5} \int \frac {e^{x/5} x^2 \left (45-2 x+x^2\right )}{(3+x)^5} \, dx+\frac {3}{5} \int \frac {e^{2 x/5} x \left (30+x+2 x^2\right )}{(3+x)^4} \, dx+\frac {3}{5} \int \frac {e^{3 x/5} \left (15+4 x+3 x^2\right )}{(3+x)^3} \, dx+\frac {3}{5} \int \frac {-7533-19602 x-20358 x^2-10782 x^3-2865 x^4-294 x^5+45 x^6+14 x^7+x^8}{(3+x)^6 \left (3 e^{x/5}-x+e^{x/5} x\right )} \, dx+\frac {3}{5} \int \frac {7290+7047 x-3807 x^2-7668 x^3-3357 x^4-45 x^5+396 x^6+135 x^7+19 x^8+x^9}{(3+x)^6 \left (3 e^{x/5}-x+e^{x/5} x\right )^2} \, dx-3 \int \frac {(-12+x) x^3}{(3+x)^6} \, dx\\ &=\frac {3 x^4}{(3+x)^5}+\frac {3 e^{4 x/5}}{3+x}+\frac {3}{5} \int \left (\frac {540 e^{x/5}}{(3+x)^5}-\frac {432 e^{x/5}}{(3+x)^4}+\frac {117 e^{x/5}}{(3+x)^3}-\frac {14 e^{x/5}}{(3+x)^2}+\frac {e^{x/5}}{3+x}\right ) \, dx+\frac {3}{5} \int \left (-\frac {135 e^{2 x/5}}{(3+x)^4}+\frac {78 e^{2 x/5}}{(3+x)^3}-\frac {17 e^{2 x/5}}{(3+x)^2}+\frac {2 e^{2 x/5}}{3+x}\right ) \, dx+\frac {3}{5} \int \left (\frac {30 e^{3 x/5}}{(3+x)^3}-\frac {14 e^{3 x/5}}{(3+x)^2}+\frac {3 e^{3 x/5}}{3+x}\right ) \, dx+\frac {3}{5} \int \frac {7290+7047 x-3807 x^2-7668 x^3-3357 x^4-45 x^5+396 x^6+135 x^7+19 x^8+x^9}{(3+x)^6 \left (x-e^{x/5} (3+x)\right )^2} \, dx+\frac {3}{5} \int \left (-\frac {18}{3 e^{x/5}-x+e^{x/5} x}-\frac {4 x}{3 e^{x/5}-x+e^{x/5} x}+\frac {x^2}{3 e^{x/5}-x+e^{x/5} x}+\frac {7290}{(3+x)^6 \left (3 e^{x/5}-x+e^{x/5} x\right )}-\frac {9882}{(3+x)^5 \left (3 e^{x/5}-x+e^{x/5} x\right )}+\frac {4995}{(3+x)^4 \left (3 e^{x/5}-x+e^{x/5} x\right )}-\frac {1080}{(3+x)^3 \left (3 e^{x/5}-x+e^{x/5} x\right )}+\frac {60}{(3+x)^2 \left (3 e^{x/5}-x+e^{x/5} x\right )}+\frac {30}{(3+x) \left (3 e^{x/5}-x+e^{x/5} x\right )}\right ) \, dx\\ &=\frac {3 x^4}{(3+x)^5}+\frac {3 e^{4 x/5}}{3+x}+\frac {3}{5} \int \frac {e^{x/5}}{3+x} \, dx+\frac {3}{5} \int \frac {x^2}{3 e^{x/5}-x+e^{x/5} x} \, dx+\frac {3}{5} \int \left (\frac {45}{\left (3 e^{x/5}-x+e^{x/5} x\right )^2}-\frac {18 x}{\left (3 e^{x/5}-x+e^{x/5} x\right )^2}+\frac {x^2}{\left (3 e^{x/5}-x+e^{x/5} x\right )^2}+\frac {x^3}{\left (3 e^{x/5}-x+e^{x/5} x\right )^2}-\frac {3645}{(3+x)^6 \left (3 e^{x/5}-x+e^{x/5} x\right )^2}+\frac {5346}{(3+x)^5 \left (3 e^{x/5}-x+e^{x/5} x\right )^2}-\frac {2592}{(3+x)^4 \left (3 e^{x/5}-x+e^{x/5} x\right )^2}+\frac {135}{(3+x)^3 \left (3 e^{x/5}-x+e^{x/5} x\right )^2}+\frac {315}{(3+x)^2 \left (3 e^{x/5}-x+e^{x/5} x\right )^2}-\frac {180}{(3+x) \left (3 e^{x/5}-x+e^{x/5} x\right )^2}\right ) \, dx+\frac {6}{5} \int \frac {e^{2 x/5}}{3+x} \, dx+\frac {9}{5} \int \frac {e^{3 x/5}}{3+x} \, dx-\frac {12}{5} \int \frac {x}{3 e^{x/5}-x+e^{x/5} x} \, dx-\frac {42}{5} \int \frac {e^{x/5}}{(3+x)^2} \, dx-\frac {42}{5} \int \frac {e^{3 x/5}}{(3+x)^2} \, dx-\frac {51}{5} \int \frac {e^{2 x/5}}{(3+x)^2} \, dx-\frac {54}{5} \int \frac {1}{3 e^{x/5}-x+e^{x/5} x} \, dx+18 \int \frac {e^{3 x/5}}{(3+x)^3} \, dx+18 \int \frac {1}{(3+x) \left (3 e^{x/5}-x+e^{x/5} x\right )} \, dx+36 \int \frac {1}{(3+x)^2 \left (3 e^{x/5}-x+e^{x/5} x\right )} \, dx+\frac {234}{5} \int \frac {e^{2 x/5}}{(3+x)^3} \, dx+\frac {351}{5} \int \frac {e^{x/5}}{(3+x)^3} \, dx-81 \int \frac {e^{2 x/5}}{(3+x)^4} \, dx-\frac {1296}{5} \int \frac {e^{x/5}}{(3+x)^4} \, dx+324 \int \frac {e^{x/5}}{(3+x)^5} \, dx-648 \int \frac {1}{(3+x)^3 \left (3 e^{x/5}-x+e^{x/5} x\right )} \, dx+2997 \int \frac {1}{(3+x)^4 \left (3 e^{x/5}-x+e^{x/5} x\right )} \, dx+4374 \int \frac {1}{(3+x)^6 \left (3 e^{x/5}-x+e^{x/5} x\right )} \, dx-\frac {29646}{5} \int \frac {1}{(3+x)^5 \left (3 e^{x/5}-x+e^{x/5} x\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.36, size = 32, normalized size = 1.00 \begin {gather*} \frac {3 \left (2+e^x-x-x^2\right )}{-x+e^{x/5} (3+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 109, normalized size = 3.41 \begin {gather*} \frac {3 \, {\left (x^{7} + 16 \, x^{6} + 103 \, x^{5} + 330 \, x^{4} + 495 \, x^{3} + 108 \, x^{2} - 567 \, x - e^{\left (x + 5 \, \log \left (x + 3\right )\right )} - 486\right )}}{x^{6} + 15 \, x^{5} + 90 \, x^{4} + 270 \, x^{3} + 405 \, x^{2} - {\left (x^{5} + 15 \, x^{4} + 90 \, x^{3} + 270 \, x^{2} + 405 \, x + 243\right )} e^{\left (\frac {1}{5} \, x + \log \left (x + 3\right )\right )} + 243 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 108, normalized size = 3.38 \begin {gather*} -\frac {3 \, {\left (x^{5} + 10 \, x^{4} - x^{3} e^{x} + 34 \, x^{3} - 9 \, x^{2} e^{x} + 36 \, x^{2} - 27 \, x e^{x} - 27 \, x - 27 \, e^{x} - 54\right )}}{x^{4} e^{\left (\frac {1}{5} \, x\right )} - x^{4} + 12 \, x^{3} e^{\left (\frac {1}{5} \, x\right )} - 9 \, x^{3} + 54 \, x^{2} e^{\left (\frac {1}{5} \, x\right )} - 27 \, x^{2} + 108 \, x e^{\left (\frac {1}{5} \, x\right )} - 27 \, x + 81 \, e^{\left (\frac {1}{5} \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.26, size = 62, normalized size = 1.94
method | result | size |
default | \(\frac {-6+3 \,{\mathrm e}^{\ln \left (3+x \right )+\frac {x}{5}}+3 x^{2}}{x -{\mathrm e}^{\ln \left (3+x \right )+\frac {x}{5}}}+\frac {3 \,{\mathrm e}^{x}}{x \,{\mathrm e}^{\frac {x}{5}}-x +3 \,{\mathrm e}^{\frac {x}{5}}}\) | \(62\) |
risch | \(\frac {3 x^{4}}{\left (x^{2}+6 x +9\right ) \left (3+x \right )^{3}}+\frac {3 \,{\mathrm e}^{\frac {4 x}{5}}}{3+x}+\frac {3 x \,{\mathrm e}^{\frac {3 x}{5}}}{\left (3+x \right )^{2}}+\frac {3 x^{2} {\mathrm e}^{\frac {2 x}{5}}}{\left (3+x \right )^{3}}+\frac {3 x^{3} {\mathrm e}^{\frac {x}{5}}}{\left (3+x \right )^{4}}-\frac {3 \left (x^{7}+16 x^{6}+102 x^{5}+330 x^{4}+495 x^{3}+108 x^{2}-567 x -486\right )}{\left (x^{2}+6 x +9\right ) \left (3+x \right )^{3} \left (x \,{\mathrm e}^{\frac {x}{5}}-x +3 \,{\mathrm e}^{\frac {x}{5}}\right )}\) | \(141\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 26, normalized size = 0.81 \begin {gather*} -\frac {3 \, {\left (x^{2} + x - e^{x} - 2\right )}}{{\left (x + 3\right )} e^{\left (\frac {1}{5} \, x\right )} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.28, size = 28, normalized size = 0.88 \begin {gather*} \frac {3\,x-3\,{\mathrm {e}}^x+3\,x^2-6}{x-{\mathrm {e}}^{x/5}\,\left (x+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.59, size = 366, normalized size = 11.44 \begin {gather*} \frac {3 x^{4}}{x^{5} + 15 x^{4} + 90 x^{3} + 270 x^{2} + 405 x + 243} + \frac {\left (3 x^{9} + 54 x^{8} + 405 x^{7} + 1620 x^{6} + 3645 x^{5} + 4374 x^{4} + 2187 x^{3}\right ) e^{\frac {x}{5}} + \left (3 x^{9} + 63 x^{8} + 567 x^{7} + 2835 x^{6} + 8505 x^{5} + 15309 x^{4} + 15309 x^{3} + 6561 x^{2}\right ) e^{\frac {2 x}{5}} + \left (3 x^{9} + 72 x^{8} + 756 x^{7} + 4536 x^{6} + 17010 x^{5} + 40824 x^{4} + 61236 x^{3} + 52488 x^{2} + 19683 x\right ) e^{\frac {3 x}{5}} + \left (3 x^{9} + 81 x^{8} + 972 x^{7} + 6804 x^{6} + 30618 x^{5} + 91854 x^{4} + 183708 x^{3} + 236196 x^{2} + 177147 x + 59049\right ) e^{\frac {4 x}{5}}}{x^{10} + 30 x^{9} + 405 x^{8} + 3240 x^{7} + 17010 x^{6} + 61236 x^{5} + 153090 x^{4} + 262440 x^{3} + 295245 x^{2} + 196830 x + 59049} + \frac {- 3 x^{7} - 48 x^{6} - 306 x^{5} - 990 x^{4} - 1485 x^{3} - 324 x^{2} + 1701 x + 1458}{- x^{6} - 15 x^{5} - 90 x^{4} - 270 x^{3} - 405 x^{2} - 243 x + \left (x^{6} + 18 x^{5} + 135 x^{4} + 540 x^{3} + 1215 x^{2} + 1458 x + 729\right ) e^{\frac {x}{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________