Optimal. Leaf size=21 \[ \frac {\left (5-e^x+4 (-1+5 x)\right ) \log (2)}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.56, antiderivative size = 28, normalized size of antiderivative = 1.33, number of steps used = 14, number of rules used = 9, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.225, Rules used = {6688, 12, 6742, 2202, 2353, 2297, 2298, 2302, 30} \begin {gather*} \frac {20 x \log (2)}{\log (x)}-\frac {e^x \log (2)}{\log (x)}+\frac {\log (2)}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2202
Rule 2297
Rule 2298
Rule 2302
Rule 2353
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (2) \left (-1+e^x-20 x-\left (-20+e^x\right ) x \log (x)\right )}{x \log ^2(x)} \, dx\\ &=\log (2) \int \frac {-1+e^x-20 x-\left (-20+e^x\right ) x \log (x)}{x \log ^2(x)} \, dx\\ &=\log (2) \int \left (-\frac {e^x (-1+x \log (x))}{x \log ^2(x)}+\frac {-1-20 x+20 x \log (x)}{x \log ^2(x)}\right ) \, dx\\ &=-\left (\log (2) \int \frac {e^x (-1+x \log (x))}{x \log ^2(x)} \, dx\right )+\log (2) \int \frac {-1-20 x+20 x \log (x)}{x \log ^2(x)} \, dx\\ &=-\frac {e^x \log (2)}{\log (x)}+\log (2) \int \left (\frac {-1-20 x}{x \log ^2(x)}+\frac {20}{\log (x)}\right ) \, dx\\ &=-\frac {e^x \log (2)}{\log (x)}+\log (2) \int \frac {-1-20 x}{x \log ^2(x)} \, dx+(20 \log (2)) \int \frac {1}{\log (x)} \, dx\\ &=-\frac {e^x \log (2)}{\log (x)}+20 \log (2) \text {li}(x)+\log (2) \int \left (-\frac {20}{\log ^2(x)}-\frac {1}{x \log ^2(x)}\right ) \, dx\\ &=-\frac {e^x \log (2)}{\log (x)}+20 \log (2) \text {li}(x)-\log (2) \int \frac {1}{x \log ^2(x)} \, dx-(20 \log (2)) \int \frac {1}{\log ^2(x)} \, dx\\ &=-\frac {e^x \log (2)}{\log (x)}+\frac {20 x \log (2)}{\log (x)}+20 \log (2) \text {li}(x)-\log (2) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )-(20 \log (2)) \int \frac {1}{\log (x)} \, dx\\ &=\frac {\log (2)}{\log (x)}-\frac {e^x \log (2)}{\log (x)}+\frac {20 x \log (2)}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 16, normalized size = 0.76 \begin {gather*} -\frac {\left (-1+e^x-20 x\right ) \log (2)}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 20, normalized size = 0.95 \begin {gather*} \frac {{\left (20 \, x + 1\right )} \log \relax (2) - e^{x} \log \relax (2)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 19, normalized size = 0.90 \begin {gather*} \frac {20 \, x \log \relax (2) - e^{x} \log \relax (2) + \log \relax (2)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 17, normalized size = 0.81
method | result | size |
risch | \(\frac {\ln \relax (2) \left (20 x +1-{\mathrm e}^{x}\right )}{\ln \relax (x )}\) | \(17\) |
norman | \(\frac {20 x \ln \relax (2)-{\mathrm e}^{x} \ln \relax (2)+\ln \relax (2)}{\ln \relax (x )}\) | \(20\) |
default | \(-\frac {\ln \relax (2) {\mathrm e}^{x}}{\ln \relax (x )}+\frac {20 \ln \relax (2) x}{\ln \relax (x )}+\frac {\ln \relax (2)}{\ln \relax (x )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -20 \, \Gamma \left (-1, -\log \relax (x)\right ) \log \relax (2) + 20 \, \int \frac {1}{\log \relax (x)}\,{d x} \log \relax (2) - \frac {e^{x} \log \relax (2)}{\log \relax (x)} + \frac {\log \relax (2)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.47, size = 16, normalized size = 0.76 \begin {gather*} \frac {\ln \relax (2)\,\left (20\,x-{\mathrm {e}}^x+1\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 22, normalized size = 1.05 \begin {gather*} \frac {20 x \log {\relax (2 )} + \log {\relax (2 )}}{\log {\relax (x )}} - \frac {e^{x} \log {\relax (2 )}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________