Optimal. Leaf size=28 \[ e^{e^{9-x}}-\log \left (2+\frac {x^2}{5 x+x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 22, normalized size of antiderivative = 0.79, number of steps used = 7, number of rules used = 5, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6728, 2282, 2194, 616, 31} \begin {gather*} e^{e^{9-x}}+\log (x+5)-\log (3 x+10) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 616
Rule 2194
Rule 2282
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{9+e^{9-x}-x}-\frac {5}{50+25 x+3 x^2}\right ) \, dx\\ &=-\left (5 \int \frac {1}{50+25 x+3 x^2} \, dx\right )-\int e^{9+e^{9-x}-x} \, dx\\ &=-\left (3 \int \frac {1}{10+3 x} \, dx\right )+3 \int \frac {1}{15+3 x} \, dx+\operatorname {Subst}\left (\int e^{9+e^9 x} \, dx,x,e^{-x}\right )\\ &=e^{e^{9-x}}+\log (5+x)-\log (10+3 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 0.79 \begin {gather*} e^{e^{9-x}}+\log (5+x)-\log (10+3 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 46, normalized size = 1.64 \begin {gather*} -{\left (e^{\left (-x + 9\right )} \log \left (3 \, x + 10\right ) - e^{\left (-x + 9\right )} \log \left (x + 5\right ) - e^{\left (-x + e^{\left (-x + 9\right )} + 9\right )}\right )} e^{\left (x - 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 46, normalized size = 1.64 \begin {gather*} -{\left (e^{\left (-x + 9\right )} \log \left (3 \, x + 10\right ) - e^{\left (-x + 9\right )} \log \left (x + 5\right ) - e^{\left (-x + e^{\left (-x + 9\right )} + 9\right )}\right )} e^{\left (x - 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 21, normalized size = 0.75
method | result | size |
norman | \({\mathrm e}^{{\mathrm e}^{9-x}}-\ln \left (3 x +10\right )+\ln \left (5+x \right )\) | \(21\) |
risch | \({\mathrm e}^{{\mathrm e}^{9-x}}-\ln \left (3 x +10\right )+\ln \left (5+x \right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 20, normalized size = 0.71 \begin {gather*} e^{\left (e^{\left (-x + 9\right )}\right )} - \log \left (3 \, x + 10\right ) + \log \left (x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.23, size = 17, normalized size = 0.61 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{-x}\,{\mathrm {e}}^9}+2\,\mathrm {atanh}\left (\frac {6\,x}{5}+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 17, normalized size = 0.61 \begin {gather*} e^{e^{9 - x}} - \log {\left (x + \frac {10}{3} \right )} + \log {\left (x + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________