Optimal. Leaf size=29 \[ \frac {e^{-e^{-2 x} \left (e^{-e^x+x}+\frac {x}{5}\right ) x}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 2.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-2 x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) \left (-5 e^{2 x}-2 x^2+2 x^3+e^{-e^x+x} \left (-5 x+5 x^2+5 e^x x^2\right )\right )}{5 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {\exp \left (-2 x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) \left (-5 e^{2 x}-2 x^2+2 x^3+e^{-e^x+x} \left (-5 x+5 x^2+5 e^x x^2\right )\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (2 \exp \left (-2 x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) (-1+x)+\frac {5 \exp \left (-e^x-x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) (-1+x)}{x}-\frac {5 \exp \left (-e^x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) \left (e^{e^x}-x^2\right )}{x^2}\right ) \, dx\\ &=\frac {2}{5} \int \exp \left (-2 x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) (-1+x) \, dx+\int \frac {\exp \left (-e^x-x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) (-1+x)}{x} \, dx-\int \frac {\exp \left (-e^x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) \left (e^{e^x}-x^2\right )}{x^2} \, dx\\ &=\frac {2}{5} \int \left (-\exp \left (-2 x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right )+\exp \left (-2 x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) x\right ) \, dx-\int \left (-\exp \left (-e^x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right )+\frac {e^{-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )}}{x^2}\right ) \, dx+\int \left (\exp \left (-e^x-x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right )-\frac {\exp \left (-e^x-x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right )}{x}\right ) \, dx\\ &=-\left (\frac {2}{5} \int \exp \left (-2 x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) \, dx\right )+\frac {2}{5} \int \exp \left (-2 x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) x \, dx+\int \exp \left (-e^x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) \, dx+\int \exp \left (-e^x-x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right ) \, dx-\int \frac {e^{-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )}}{x^2} \, dx-\int \frac {\exp \left (-e^x-x-\frac {1}{5} e^{-2 x} \left (5 e^{-e^x+x} x+x^2\right )\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 29, normalized size = 1.00 \begin {gather*} \frac {e^{-\frac {1}{5} e^{-2 x} x \left (5 e^{-e^x+x}+x\right )}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 36, normalized size = 1.24 \begin {gather*} \frac {e^{\left (-\frac {1}{5} \, {\left (x^{2} + 10 \, x e^{\left (2 \, x\right )} + 5 \, x e^{\left (x - e^{x}\right )}\right )} e^{\left (-2 \, x\right )} + 2 \, x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{3} - 2 \, x^{2} + 5 \, {\left (x^{2} e^{x} + x^{2} - x\right )} e^{\left (x - e^{x}\right )} - 5 \, e^{\left (2 \, x\right )}\right )} e^{\left (-\frac {1}{5} \, {\left (x^{2} + 5 \, x e^{\left (x - e^{x}\right )}\right )} e^{\left (-2 \, x\right )} - 2 \, x\right )}}{5 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 24, normalized size = 0.83
method | result | size |
risch | \(\frac {{\mathrm e}^{-\frac {x \left (5 \,{\mathrm e}^{x -{\mathrm e}^{x}}+x \right ) {\mathrm e}^{-2 x}}{5}}}{x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{5} \, \int \frac {{\left (2 \, x^{3} - 2 \, x^{2} + 5 \, {\left (x^{2} e^{x} + x^{2} - x\right )} e^{\left (x - e^{x}\right )} - 5 \, e^{\left (2 \, x\right )}\right )} e^{\left (-\frac {1}{5} \, {\left (x^{2} + 5 \, x e^{\left (x - e^{x}\right )}\right )} e^{\left (-2 \, x\right )} - 2 \, x\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 27, normalized size = 0.93 \begin {gather*} \frac {{\mathrm {e}}^{-x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-{\mathrm {e}}^x}}\,{\mathrm {e}}^{-\frac {x^2\,{\mathrm {e}}^{-2\,x}}{5}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 22, normalized size = 0.76 \begin {gather*} \frac {e^{- \left (\frac {x^{2}}{5} + x e^{x - e^{x}}\right ) e^{- 2 x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________