Optimal. Leaf size=18 \[ \log \left (3+\log (2)+\log ^2\left (x \left (e^4+\log (x)\right )^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.57, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 6, integrand size = 94, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.064, Rules used = {6, 6688, 12, 6696, 203, 6684} \begin {gather*} \log \left (\log ^2\left (x \left (\log (x)+e^4\right )^2\right )+3+\log (2)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 203
Rule 6684
Rule 6688
Rule 6696
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (4+2 e^4+2 \log (x)\right ) \log \left (e^8 x+2 e^4 x \log (x)+x \log ^2(x)\right )}{e^4 x (3+\log (2))+(3 x+x \log (2)) \log (x)+\left (e^4 x+x \log (x)\right ) \log ^2\left (e^8 x+2 e^4 x \log (x)+x \log ^2(x)\right )} \, dx\\ &=\int \frac {2 \left (2 \left (1+\frac {e^4}{2}\right )+\log (x)\right ) \log \left (x \left (e^4+\log (x)\right )^2\right )}{x \left (e^4+\log (x)\right ) \left (3 \left (1+\frac {\log (2)}{3}\right )+\log ^2\left (x \left (e^4+\log (x)\right )^2\right )\right )} \, dx\\ &=2 \int \frac {\left (2 \left (1+\frac {e^4}{2}\right )+\log (x)\right ) \log \left (x \left (e^4+\log (x)\right )^2\right )}{x \left (e^4+\log (x)\right ) \left (3 \left (1+\frac {\log (2)}{3}\right )+\log ^2\left (x \left (e^4+\log (x)\right )^2\right )\right )} \, dx\\ &=\log \left (3+\log (2)+\log ^2\left (x \left (e^4+\log (x)\right )^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 18, normalized size = 1.00 \begin {gather*} \log \left (3+\log (2)+\log ^2\left (x \left (e^4+\log (x)\right )^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 26, normalized size = 1.44 \begin {gather*} \log \left (\log \left (2 \, x e^{4} \log \relax (x) + x \log \relax (x)^{2} + x e^{8}\right )^{2} + \log \relax (2) + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.68, size = 43, normalized size = 2.39 \begin {gather*} \log \left (\log \left (2 \, e^{4} \log \relax (x) + \log \relax (x)^{2} + e^{8}\right )^{2} + 2 \, \log \left (2 \, e^{4} \log \relax (x) + \log \relax (x)^{2} + e^{8}\right ) \log \relax (x) + \log \relax (x)^{2} + \log \relax (2) + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.65, size = 29, normalized size = 1.61
method | result | size |
norman | \(\ln \left (\ln \left (x \ln \relax (x )^{2}+2 x \,{\mathrm e}^{4} \ln \relax (x )+x \,{\mathrm e}^{8}\right )^{2}+\ln \relax (2)+3\right )\) | \(29\) |
risch | \(\text {Expression too large to display}\) | \(1283\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 30, normalized size = 1.67 \begin {gather*} \log \left (\frac {1}{4} \, \log \relax (x)^{2} + \log \relax (x) \log \left (e^{4} + \log \relax (x)\right ) + \log \left (e^{4} + \log \relax (x)\right )^{2} + \frac {1}{4} \, \log \relax (2) + \frac {3}{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.02, size = 26, normalized size = 1.44 \begin {gather*} \ln \left ({\ln \left (x\,{\ln \relax (x)}^2+2\,x\,{\mathrm {e}}^4\,\ln \relax (x)+x\,{\mathrm {e}}^8\right )}^2+\ln \relax (2)+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 31, normalized size = 1.72 \begin {gather*} \log {\left (\log {\left (x \log {\relax (x )}^{2} + 2 x e^{4} \log {\relax (x )} + x e^{8} \right )}^{2} + \log {\relax (2 )} + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________