Optimal. Leaf size=27 \[ x+\frac {1}{-2 x+\log \left (-x+e^{-2 x} (4+4 \log (5))^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1-2 x-4 x^3+e^{-2 x} \left (4+4 x^2\right ) (4+4 \log (5))^2+\left (4 x^2-4 e^{-2 x} x (4+4 \log (5))^2\right ) \log \left (-x+e^{-2 x} (4+4 \log (5))^2\right )+\left (-x+e^{-2 x} (4+4 \log (5))^2\right ) \log ^2\left (-x+e^{-2 x} (4+4 \log (5))^2\right )}{-4 x^3+4 e^{-2 x} x^2 (4+4 \log (5))^2+\left (4 x^2-4 e^{-2 x} x (4+4 \log (5))^2\right ) \log \left (-x+e^{-2 x} (4+4 \log (5))^2\right )+\left (-x+e^{-2 x} (4+4 \log (5))^2\right ) \log ^2\left (-x+e^{-2 x} (4+4 \log (5))^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} \left (-1+2 x+4 x^3\right )-64 \left (1+x^2\right ) (1+\log (5))^2-4 x \left (e^{2 x} x-16 (1+\log (5))^2\right ) \log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )+\left (e^{2 x} x-16 (1+\log (5))^2\right ) \log ^2\left (-x+16 e^{-2 x} (1+\log (5))^2\right )}{\left (e^{2 x} x-16 (1+\log (5))^2\right ) \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx\\ &=\int \left (\frac {16 (-1-2 x) (1+\log (5))^2}{x \left (e^{2 x} x-16 (1+\log (5) (2+\log (5)))\right ) \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2}+\frac {-1+2 x+4 x^3-4 x^2 \log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )+x \log ^2\left (-x+16 e^{-2 x} (1+\log (5))^2\right )}{x \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2}\right ) \, dx\\ &=\left (16 (1+\log (5))^2\right ) \int \frac {-1-2 x}{x \left (e^{2 x} x-16 (1+\log (5) (2+\log (5)))\right ) \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx+\int \frac {-1+2 x+4 x^3-4 x^2 \log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )+x \log ^2\left (-x+16 e^{-2 x} (1+\log (5))^2\right )}{x \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx\\ &=\left (16 (1+\log (5))^2\right ) \int \left (\frac {2}{\left (-e^{2 x} x+16 (1+\log (5) (2+\log (5)))\right ) \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2}+\frac {1}{x \left (-e^{2 x} x+16 (1+\log (5) (2+\log (5)))\right ) \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2}\right ) \, dx+\int \left (1+\frac {-1+2 x}{x \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2}\right ) \, dx\\ &=x+\left (16 (1+\log (5))^2\right ) \int \frac {1}{x \left (-e^{2 x} x+16 (1+\log (5) (2+\log (5)))\right ) \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx+\left (32 (1+\log (5))^2\right ) \int \frac {1}{\left (-e^{2 x} x+16 (1+\log (5) (2+\log (5)))\right ) \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx+\int \frac {-1+2 x}{x \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx\\ &=x+\left (16 (1+\log (5))^2\right ) \int \frac {1}{x \left (-e^{2 x} x+16 (1+\log (5) (2+\log (5)))\right ) \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx+\left (32 (1+\log (5))^2\right ) \int \frac {1}{\left (-e^{2 x} x+16 (1+\log (5) (2+\log (5)))\right ) \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx+\int \left (\frac {2}{\left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2}-\frac {1}{x \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2}\right ) \, dx\\ &=x+2 \int \frac {1}{\left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx+\left (16 (1+\log (5))^2\right ) \int \frac {1}{x \left (-e^{2 x} x+16 (1+\log (5) (2+\log (5)))\right ) \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx+\left (32 (1+\log (5))^2\right ) \int \frac {1}{\left (-e^{2 x} x+16 (1+\log (5) (2+\log (5)))\right ) \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx-\int \frac {1}{x \left (2 x-\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 26, normalized size = 0.96 \begin {gather*} x+\frac {1}{-2 x+\log \left (-x+16 e^{-2 x} (1+\log (5))^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 57, normalized size = 2.11 \begin {gather*} \frac {2 \, x^{2} - x \log \left (-x + e^{\left (-2 \, x + 2 \, \log \left (4 \, \log \relax (5) + 4\right )\right )}\right ) - 1}{2 \, x - \log \left (-x + e^{\left (-2 \, x + 2 \, \log \left (4 \, \log \relax (5) + 4\right )\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.80, size = 77, normalized size = 2.85 \begin {gather*} \frac {2 \, x^{2} - x \log \left (16 \, e^{\left (-2 \, x\right )} \log \relax (5)^{2} + 32 \, e^{\left (-2 \, x\right )} \log \relax (5) - x + 16 \, e^{\left (-2 \, x\right )}\right ) - 1}{2 \, x - \log \left (16 \, e^{\left (-2 \, x\right )} \log \relax (5)^{2} + 32 \, e^{\left (-2 \, x\right )} \log \relax (5) - x + 16 \, e^{\left (-2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 31, normalized size = 1.15
method | result | size |
risch | \(x -\frac {1}{2 x -\ln \left (\left (4 \ln \relax (5)+4\right )^{2} {\mathrm e}^{-2 x}-x \right )}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.82, size = 59, normalized size = 2.19 \begin {gather*} \frac {4 \, x^{2} - x \log \left (-x e^{\left (2 \, x\right )} + 16 \, \log \relax (5)^{2} + 32 \, \log \relax (5) + 16\right ) - 1}{4 \, x - \log \left (-x e^{\left (2 \, x\right )} + 16 \, \log \relax (5)^{2} + 32 \, \log \relax (5) + 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.73, size = 41, normalized size = 1.52 \begin {gather*} x-\frac {1}{2\,x-\ln \left (16\,{\mathrm {e}}^{-2\,x}-x+32\,{\mathrm {e}}^{-2\,x}\,\ln \relax (5)+16\,{\mathrm {e}}^{-2\,x}\,{\ln \relax (5)}^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.69, size = 22, normalized size = 0.81 \begin {gather*} x + \frac {1}{- 2 x + \log {\left (- x + \left (4 + 4 \log {\relax (5 )}\right )^{2} e^{- 2 x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________