Optimal. Leaf size=22 \[ \frac {x^2}{-4-3 e+\left (-e^2+2 x\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 40, normalized size of antiderivative = 1.82, number of steps used = 5, number of rules used = 4, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {6, 1593, 1680, 776} \begin {gather*} -\frac {4 e^2 x-e^4+3 e+4}{4 \left (-4 \left (x-\frac {e^2}{2}\right )^2+3 e+4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 776
Rule 1593
Rule 1680
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(-8-6 e) x+2 e^4 x-4 e^2 x^2}{16+9 e^2+e^8-8 e^6 x-32 x^2+16 x^4+e \left (24-24 x^2\right )+e^4 \left (-8-6 e+24 x^2\right )+e^2 \left (32 x+24 e x-32 x^3\right )} \, dx\\ &=\int \frac {\left (-8-6 e+2 e^4\right ) x-4 e^2 x^2}{16+9 e^2+e^8-8 e^6 x-32 x^2+16 x^4+e \left (24-24 x^2\right )+e^4 \left (-8-6 e+24 x^2\right )+e^2 \left (32 x+24 e x-32 x^3\right )} \, dx\\ &=\int \frac {x \left (-8-6 e+2 e^4-4 e^2 x\right )}{16+9 e^2+e^8-8 e^6 x-32 x^2+16 x^4+e \left (24-24 x^2\right )+e^4 \left (-8-6 e+24 x^2\right )+e^2 \left (32 x+24 e x-32 x^3\right )} \, dx\\ &=\operatorname {Subst}\left (\int \frac {\left (e^2+2 x\right ) \left (-4-3 e-2 e^2 x\right )}{\left (4+3 e-4 x^2\right )^2} \, dx,x,-\frac {e^2}{2}+x\right )\\ &=-\frac {4+3 e-e^4+4 e^2 x}{4 \left (4+3 e-4 \left (-\frac {e^2}{2}+x\right )^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 41, normalized size = 1.86 \begin {gather*} \frac {4+3 e-e^4+4 e^2 x}{4 \left (-4-3 e+e^4-4 e^2 x+4 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 37, normalized size = 1.68 \begin {gather*} \frac {4 \, x e^{2} - e^{4} + 3 \, e + 4}{4 \, {\left (4 \, x^{2} - 4 \, x e^{2} + e^{4} - 3 \, e - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 25, normalized size = 1.14 \begin {gather*} -402220.435284000 \, \log \left (x - 1.95133771141000\right ) + 402220.278650000 \, \log \left (x - 1.95133839025000\right ) + 1.04691448776000 \times 10^{6} \, \log \left (x - 5.43771703546000\right ) - 1.04691400222400 \times 10^{6} \, \log \left (x - 5.43771906075000\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 36, normalized size = 1.64
method | result | size |
risch | \(\frac {{\mathrm e}^{2} x -\frac {{\mathrm e}^{4}}{4}+\frac {3 \,{\mathrm e}}{4}+1}{{\mathrm e}^{4}-4 \,{\mathrm e}^{2} x +4 x^{2}-3 \,{\mathrm e}-4}\) | \(36\) |
gosper | \(-\frac {{\mathrm e}^{4}-4 \,{\mathrm e}^{2} x -3 \,{\mathrm e}-4}{4 \left ({\mathrm e}^{4}-4 \,{\mathrm e}^{2} x +4 x^{2}-3 \,{\mathrm e}-4\right )}\) | \(40\) |
norman | \(\frac {{\mathrm e}^{2} x -\frac {{\mathrm e}^{4}}{4}+\frac {3 \,{\mathrm e}}{4}+1}{{\mathrm e}^{4}-4 \,{\mathrm e}^{2} x +4 x^{2}-3 \,{\mathrm e}-4}\) | \(40\) |
default | \(\frac {\left (\munderset {\textit {\_R} =\RootOf \left (16 \textit {\_Z}^{4}-32 \textit {\_Z}^{3} {\mathrm e}^{2}+\left (24 \,{\mathrm e}^{4}-24 \,{\mathrm e}-32\right ) \textit {\_Z}^{2}+\left (32 \,{\mathrm e}^{2}+24 \,{\mathrm e}^{3}-8 \,{\mathrm e}^{6}\right ) \textit {\_Z} -6 \,{\mathrm e}^{5}+9 \,{\mathrm e}^{2}-8 \,{\mathrm e}^{4}+24 \,{\mathrm e}+{\mathrm e}^{8}+16\right )}{\sum }\frac {\left (2 \textit {\_R}^{2} {\mathrm e}^{2}+\left (4-{\mathrm e}^{4}+3 \,{\mathrm e}\right ) \textit {\_R} \right ) \ln \left (x -\textit {\_R} \right )}{12 \textit {\_R}^{2} {\mathrm e}^{2}-8 \textit {\_R}^{3}-6 \textit {\_R} \,{\mathrm e}^{4}+6 \textit {\_R} \,{\mathrm e}-4 \,{\mathrm e}^{2}-3 \,{\mathrm e}^{3}+{\mathrm e}^{6}+8 \textit {\_R}}\right )}{4}\) | \(133\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 37, normalized size = 1.68 \begin {gather*} \frac {4 \, x e^{2} - e^{4} + 3 \, e + 4}{4 \, {\left (4 \, x^{2} - 4 \, x e^{2} + e^{4} - 3 \, e - 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 38, normalized size = 1.73 \begin {gather*} -\frac {\frac {3\,\mathrm {e}}{4}-\frac {{\mathrm {e}}^4}{4}+x\,{\mathrm {e}}^2+1}{-4\,x^2+4\,{\mathrm {e}}^2\,x+3\,\mathrm {e}-{\mathrm {e}}^4+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.93, size = 41, normalized size = 1.86 \begin {gather*} - \frac {- 4 x e^{2} - 3 e - 4 + e^{4}}{16 x^{2} - 16 x e^{2} - 12 e - 16 + 4 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________