Optimal. Leaf size=25 \[ x-x \left (-20+x+\left (-1+x+x^2-\left (-4+e^x\right ) \log (2)\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.16, antiderivative size = 127, normalized size of antiderivative = 5.08, number of steps used = 20, number of rules used = 3, integrand size = 87, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {2176, 2194, 2196} \begin {gather*} -x^5-2 x^4+x^3+2 e^x x^3 \log (2)-8 x^3 \log (2)+x^2+2 e^x x^2 \log (2)-8 x^2 \log (2)+4 x \left (5-4 \log ^2(2)\right )-8 e^x \log ^2(2)+\frac {1}{2} e^{2 x} \log ^2(2)+8 e^x (x+1) \log ^2(2)-\frac {1}{2} e^{2 x} (2 x+1) \log ^2(2)-2 e^x x \log (2)+8 x \log (2) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x^2+x^3-2 x^4-x^5+4 x \left (5-4 \log ^2(2)\right )+\log (2) \int \left (8-16 x-24 x^2\right ) \, dx+\log ^2(2) \int e^{2 x} (-1-2 x) \, dx+\int e^x \left (\left (-2+2 x+8 x^2+2 x^3\right ) \log (2)+(8+8 x) \log ^2(2)\right ) \, dx\\ &=x^2+x^3-2 x^4-x^5+8 x \log (2)-8 x^2 \log (2)-8 x^3 \log (2)-\frac {1}{2} e^{2 x} (1+2 x) \log ^2(2)+4 x \left (5-4 \log ^2(2)\right )+\log ^2(2) \int e^{2 x} \, dx+\int \left (2 e^x \left (-1+x+4 x^2+x^3\right ) \log (2)+8 e^x (1+x) \log ^2(2)\right ) \, dx\\ &=x^2+x^3-2 x^4-x^5+8 x \log (2)-8 x^2 \log (2)-8 x^3 \log (2)+\frac {1}{2} e^{2 x} \log ^2(2)-\frac {1}{2} e^{2 x} (1+2 x) \log ^2(2)+4 x \left (5-4 \log ^2(2)\right )+(2 \log (2)) \int e^x \left (-1+x+4 x^2+x^3\right ) \, dx+\left (8 \log ^2(2)\right ) \int e^x (1+x) \, dx\\ &=x^2+x^3-2 x^4-x^5+8 x \log (2)-8 x^2 \log (2)-8 x^3 \log (2)+\frac {1}{2} e^{2 x} \log ^2(2)+8 e^x (1+x) \log ^2(2)-\frac {1}{2} e^{2 x} (1+2 x) \log ^2(2)+4 x \left (5-4 \log ^2(2)\right )+(2 \log (2)) \int \left (-e^x+e^x x+4 e^x x^2+e^x x^3\right ) \, dx-\left (8 \log ^2(2)\right ) \int e^x \, dx\\ &=x^2+x^3-2 x^4-x^5+8 x \log (2)-8 x^2 \log (2)-8 x^3 \log (2)-8 e^x \log ^2(2)+\frac {1}{2} e^{2 x} \log ^2(2)+8 e^x (1+x) \log ^2(2)-\frac {1}{2} e^{2 x} (1+2 x) \log ^2(2)+4 x \left (5-4 \log ^2(2)\right )-(2 \log (2)) \int e^x \, dx+(2 \log (2)) \int e^x x \, dx+(2 \log (2)) \int e^x x^3 \, dx+(8 \log (2)) \int e^x x^2 \, dx\\ &=x^2+x^3-2 x^4-x^5-2 e^x \log (2)+8 x \log (2)+2 e^x x \log (2)-8 x^2 \log (2)+8 e^x x^2 \log (2)-8 x^3 \log (2)+2 e^x x^3 \log (2)-8 e^x \log ^2(2)+\frac {1}{2} e^{2 x} \log ^2(2)+8 e^x (1+x) \log ^2(2)-\frac {1}{2} e^{2 x} (1+2 x) \log ^2(2)+4 x \left (5-4 \log ^2(2)\right )-(2 \log (2)) \int e^x \, dx-(6 \log (2)) \int e^x x^2 \, dx-(16 \log (2)) \int e^x x \, dx\\ &=x^2+x^3-2 x^4-x^5-4 e^x \log (2)+8 x \log (2)-14 e^x x \log (2)-8 x^2 \log (2)+2 e^x x^2 \log (2)-8 x^3 \log (2)+2 e^x x^3 \log (2)-8 e^x \log ^2(2)+\frac {1}{2} e^{2 x} \log ^2(2)+8 e^x (1+x) \log ^2(2)-\frac {1}{2} e^{2 x} (1+2 x) \log ^2(2)+4 x \left (5-4 \log ^2(2)\right )+(12 \log (2)) \int e^x x \, dx+(16 \log (2)) \int e^x \, dx\\ &=x^2+x^3-2 x^4-x^5+12 e^x \log (2)+8 x \log (2)-2 e^x x \log (2)-8 x^2 \log (2)+2 e^x x^2 \log (2)-8 x^3 \log (2)+2 e^x x^3 \log (2)-8 e^x \log ^2(2)+\frac {1}{2} e^{2 x} \log ^2(2)+8 e^x (1+x) \log ^2(2)-\frac {1}{2} e^{2 x} (1+2 x) \log ^2(2)+4 x \left (5-4 \log ^2(2)\right )-(12 \log (2)) \int e^x \, dx\\ &=x^2+x^3-2 x^4-x^5+8 x \log (2)-2 e^x x \log (2)-8 x^2 \log (2)+2 e^x x^2 \log (2)-8 x^3 \log (2)+2 e^x x^3 \log (2)-8 e^x \log ^2(2)+\frac {1}{2} e^{2 x} \log ^2(2)+8 e^x (1+x) \log ^2(2)-\frac {1}{2} e^{2 x} (1+2 x) \log ^2(2)+4 x \left (5-4 \log ^2(2)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 78, normalized size = 3.12 \begin {gather*} 20 x+x^2+x^3-2 x^4-x^5+8 x \log (2)-8 x^2 \log (2)-8 x^3 \log (2)-16 x \log ^2(2)-e^{2 x} x \log ^2(2)+2 e^x \log (2) \left (x^2+x^3+x (-1+\log (16))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 77, normalized size = 3.08 \begin {gather*} -x^{5} - 2 \, x^{4} - x e^{\left (2 \, x\right )} \log \relax (2)^{2} + x^{3} - 16 \, x \log \relax (2)^{2} + x^{2} + 2 \, {\left (4 \, x \log \relax (2)^{2} + {\left (x^{3} + x^{2} - x\right )} \log \relax (2)\right )} e^{x} - 8 \, {\left (x^{3} + x^{2} - x\right )} \log \relax (2) + 20 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 81, normalized size = 3.24 \begin {gather*} -x^{5} - 2 \, x^{4} - x e^{\left (2 \, x\right )} \log \relax (2)^{2} + x^{3} - 16 \, x \log \relax (2)^{2} + x^{2} + 2 \, {\left (x^{3} \log \relax (2) + x^{2} \log \relax (2) + 4 \, x \log \relax (2)^{2} - x \log \relax (2)\right )} e^{x} - 8 \, {\left (x^{3} + x^{2} - x\right )} \log \relax (2) + 20 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 88, normalized size = 3.52
method | result | size |
risch | \(-x \ln \relax (2)^{2} {\mathrm e}^{2 x}+\left (2 x^{3} \ln \relax (2)+8 x \ln \relax (2)^{2}+2 x^{2} \ln \relax (2)-2 x \ln \relax (2)\right ) {\mathrm e}^{x}-16 x \ln \relax (2)^{2}-8 x^{3} \ln \relax (2)-8 x^{2} \ln \relax (2)+8 x \ln \relax (2)-x^{5}-2 x^{4}+x^{3}+x^{2}+20 x\) | \(88\) |
norman | \(\left (-8 \ln \relax (2)+1\right ) x^{2}+\left (-8 \ln \relax (2)+1\right ) x^{3}+\left (-16 \ln \relax (2)^{2}+8 \ln \relax (2)+20\right ) x +\left (8 \ln \relax (2)^{2}-2 \ln \relax (2)\right ) x \,{\mathrm e}^{x}-2 x^{4}-x^{5}-x \ln \relax (2)^{2} {\mathrm e}^{2 x}+2 x^{2} \ln \relax (2) {\mathrm e}^{x}+2 x^{3} \ln \relax (2) {\mathrm e}^{x}\) | \(90\) |
default | \(20 x +2 x^{2} \ln \relax (2) {\mathrm e}^{x}-2 x \ln \relax (2) {\mathrm e}^{x}+2 x^{3} \ln \relax (2) {\mathrm e}^{x}+8 x \ln \relax (2)^{2} {\mathrm e}^{x}-8 x^{3} \ln \relax (2)-8 x^{2} \ln \relax (2)+8 x \ln \relax (2)-x \ln \relax (2)^{2} {\mathrm e}^{2 x}+x^{2}+x^{3}-2 x^{4}-x^{5}-16 x \ln \relax (2)^{2}\) | \(92\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 82, normalized size = 3.28 \begin {gather*} -x^{5} - 2 \, x^{4} - x e^{\left (2 \, x\right )} \log \relax (2)^{2} + x^{3} - 16 \, x \log \relax (2)^{2} + x^{2} + 2 \, {\left (x^{3} \log \relax (2) + x^{2} \log \relax (2) + {\left (4 \, \log \relax (2)^{2} - \log \relax (2)\right )} x\right )} e^{x} - 8 \, {\left (x^{3} + x^{2} - x\right )} \log \relax (2) + 20 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 82, normalized size = 3.28 \begin {gather*} x\,\left (\ln \left (256\right )-16\,{\ln \relax (2)}^2+20\right )-x^3\,\left (\ln \left (256\right )-1\right )-x^2\,\left (\ln \left (256\right )-1\right )-2\,x^4-x^5+x^2\,{\mathrm {e}}^x\,\ln \relax (4)+x^3\,{\mathrm {e}}^x\,\ln \relax (4)-x\,{\mathrm {e}}^x\,\left (\ln \relax (4)-8\,{\ln \relax (2)}^2\right )-x\,{\mathrm {e}}^{2\,x}\,{\ln \relax (2)}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 90, normalized size = 3.60 \begin {gather*} - x^{5} - 2 x^{4} + x^{3} \left (1 - 8 \log {\relax (2 )}\right ) + x^{2} \left (1 - 8 \log {\relax (2 )}\right ) - x e^{2 x} \log {\relax (2 )}^{2} + x \left (- 16 \log {\relax (2 )}^{2} + 8 \log {\relax (2 )} + 20\right ) + \left (2 x^{3} \log {\relax (2 )} + 2 x^{2} \log {\relax (2 )} - 2 x \log {\relax (2 )} + 8 x \log {\relax (2 )}^{2}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________