Optimal. Leaf size=23 \[ \frac {1}{21} \left (25+e^{1+e^{-4 e^{-2 x} x} \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (1-2 x-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right ) \left (e^{2 x}+\left (-4 x+8 x^2\right ) \log (x)\right )}{21 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{21} \int \frac {\exp \left (1-2 x-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right ) \left (e^{2 x}+\left (-4 x+8 x^2\right ) \log (x)\right )}{x} \, dx\\ &=\frac {1}{21} \int \left (\frac {\exp \left (1-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right )}{x}+4 \exp \left (1-2 x-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right ) (-1+2 x) \log (x)\right ) \, dx\\ &=\frac {1}{21} \int \frac {\exp \left (1-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right )}{x} \, dx+\frac {4}{21} \int \exp \left (1-2 x-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right ) (-1+2 x) \log (x) \, dx\\ &=\frac {1}{21} \int \frac {\exp \left (1-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right )}{x} \, dx+\frac {4}{21} \int \left (-\exp \left (1-2 x-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right ) \log (x)+2 \exp \left (1-2 x-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right ) x \log (x)\right ) \, dx\\ &=\frac {1}{21} \int \frac {\exp \left (1-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right )}{x} \, dx-\frac {4}{21} \int \exp \left (1-2 x-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right ) \log (x) \, dx+\frac {8}{21} \int \exp \left (1-2 x-4 e^{-2 x} x+e^{-4 e^{-2 x} x} \log (x)\right ) x \log (x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.51, size = 17, normalized size = 0.74 \begin {gather*} \frac {1}{21} e x^{e^{-4 e^{-2 x} x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 50, normalized size = 2.17 \begin {gather*} \frac {1}{21} \, e^{\left (-{\left ({\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} - e^{\left (-4 \, x e^{\left (-2 \, x\right )} + 2 \, x\right )} \log \relax (x) + 4 \, x\right )} e^{\left (-2 \, x\right )} + 4 \, x e^{\left (-2 \, x\right )} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 14, normalized size = 0.61 \begin {gather*} \frac {1}{21} \, x^{e^{\left (-4 \, x e^{\left (-2 \, x\right )}\right )}} e \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 15, normalized size = 0.65
method | result | size |
risch | \(\frac {x^{{\mathrm e}^{-4 x \,{\mathrm e}^{-2 x}}} {\mathrm e}}{21}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 16, normalized size = 0.70 \begin {gather*} \frac {1}{21} \, e^{\left (e^{\left (-4 \, x e^{\left (-2 \, x\right )}\right )} \log \relax (x) + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.21, size = 14, normalized size = 0.61 \begin {gather*} \frac {x^{{\mathrm {e}}^{-4\,x\,{\mathrm {e}}^{-2\,x}}}\,\mathrm {e}}{21} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.40, size = 17, normalized size = 0.74 \begin {gather*} \frac {e^{1 + e^{- 4 x e^{- 2 x}} \log {\relax (x )}}}{21} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________