Optimal. Leaf size=20 \[ e^{-4+e^{-x+\frac {1}{2} (1+\log (x))}} x \]
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 61, normalized size of antiderivative = 3.05, number of steps used = 2, number of rules used = 2, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {12, 2288} \begin {gather*} -\frac {(1-2 x) \exp \left (e^{\frac {1}{2} (1-2 x)} \sqrt {x}+\frac {1}{2} (2 x-\log (x)-1)+\frac {1}{2} (-2 x+\log (x)+1)-4\right )}{2-\frac {1}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int e^{-4+e^{\frac {1}{2} (1-2 x+\log (x))}} \left (2+e^{\frac {1}{2} (1-2 x+\log (x))} (1-2 x)\right ) \, dx\\ &=-\frac {\exp \left (-4+e^{\frac {1}{2} (1-2 x)} \sqrt {x}+\frac {1}{2} (-1+2 x-\log (x))+\frac {1}{2} (1-2 x+\log (x))\right ) (1-2 x)}{2-\frac {1}{x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.97, size = 45, normalized size = 2.25 \begin {gather*} \frac {1}{2} \int e^{-4+e^{\frac {1}{2} (1-2 x+\log (x))}} \left (2+e^{\frac {1}{2} (1-2 x+\log (x))} (1-2 x)\right ) \, dx \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 15, normalized size = 0.75 \begin {gather*} x e^{\left (e^{\left (-x + \frac {1}{2} \, \log \relax (x) + \frac {1}{2}\right )} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{2} \, {\left ({\left (2 \, x - 1\right )} e^{\left (-x + \frac {1}{2} \, \log \relax (x) + \frac {1}{2}\right )} - 2\right )} e^{\left (e^{\left (-x + \frac {1}{2} \, \log \relax (x) + \frac {1}{2}\right )} - 4\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 16, normalized size = 0.80
method | result | size |
norman | \({\mathrm e}^{{\mathrm e}^{\frac {\ln \relax (x )}{2}+\frac {1}{2}-x}-4} x\) | \(16\) |
risch | \({\mathrm e}^{\sqrt {x}\, {\mathrm e}^{\frac {1}{2}-x}-4} x\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{4} \, e^{\left (-5\right )} \int \frac {{\left ({\left (2 \, x^{2} e^{\frac {1}{2}} - x e^{\frac {1}{2}}\right )} e^{x} - 2 \, {\left (2 \, x^{3} e - x^{2} e - 2 \, {\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )}\right )} \sqrt {x}\right )} e^{\left (\sqrt {x} e^{\left (-x + \frac {1}{2}\right )}\right )}}{x^{\frac {7}{2}}}\,{d x} + \frac {{\left (2 \, x^{3} e^{\frac {3}{2}} + 2 \, x^{\frac {3}{2}} e^{\left (x + 1\right )} + {\left (2 \, x e^{\frac {1}{2}} - e^{\frac {1}{2}}\right )} e^{\left (2 \, x\right )}\right )} e^{\left (\sqrt {x} e^{\left (-x + \frac {1}{2}\right )} - \frac {11}{2}\right )}}{2 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.50, size = 15, normalized size = 0.75 \begin {gather*} x\,{\mathrm {e}}^{\sqrt {x}\,{\mathrm {e}}^{-x}\,\sqrt {\mathrm {e}}}\,{\mathrm {e}}^{-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \frac {\int \left (- \sqrt {x} e^{\frac {1}{2}} e^{- x} e^{\sqrt {x} e^{\frac {1}{2}} e^{- x}}\right )\, dx + \int 2 x^{\frac {3}{2}} e^{\frac {1}{2}} e^{- x} e^{\sqrt {x} e^{\frac {1}{2}} e^{- x}}\, dx + \int \left (- 2 e^{\sqrt {x} e^{\frac {1}{2}} e^{- x}}\right )\, dx}{2 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________