Optimal. Leaf size=34 \[ x^2 \log \left (\log \left (\frac {1}{3} e^{-x} \left (-4-\left (2+3 e^{-x}\right ) x+2 x^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 x^2+6 x^3+e^x \left (2 x^2+6 x^3-2 x^4\right )+\left (-6 x^2+e^x \left (-8 x-4 x^2+4 x^3\right )\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+e^x \left (-4-2 x+2 x^2\right )\right )\right ) \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+e^x \left (-4-2 x+2 x^2\right )\right )\right )\right )}{\left (-3 x+e^x \left (-4-2 x+2 x^2\right )\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+e^x \left (-4-2 x+2 x^2\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3 x^2 \left (2-2 x+x^3\right )}{\left (-2-x+x^2\right ) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}-\frac {x \left (-x-3 x^2+x^3+4 \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right ) \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right )+2 x \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right ) \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right )-2 x^2 \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right ) \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right )\right )}{\left (-2-x+x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}\right ) \, dx\\ &=3 \int \frac {x^2 \left (2-2 x+x^3\right )}{\left (-2-x+x^2\right ) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx-\int \frac {x \left (-x-3 x^2+x^3+4 \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right ) \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right )+2 x \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right ) \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right )-2 x^2 \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right ) \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right )\right )}{\left (-2-x+x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx\\ &=3 \int \left (\frac {5}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}+\frac {8}{(-2+x) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}+\frac {x}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}+\frac {x^2}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}+\frac {x^3}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}-\frac {1}{(1+x) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}\right ) \, dx-\int \frac {x \left (-\frac {x \left (-1-3 x+x^2\right )}{\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}-2 \left (2+x-x^2\right ) \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right )\right )}{2+x-x^2} \, dx\\ &=3 \int \frac {x}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+3 \int \frac {x^2}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+3 \int \frac {x^3}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx-3 \int \frac {1}{(1+x) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+15 \int \frac {1}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+24 \int \frac {1}{(-2+x) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx-\int \left (\frac {x^2 \left (-1-3 x+x^2\right )}{(-2+x) (1+x) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}-2 x \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right )\right ) \, dx\\ &=2 \int x \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right ) \, dx+3 \int \frac {x}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+3 \int \frac {x^2}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+3 \int \frac {x^3}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx-3 \int \frac {1}{(1+x) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+15 \int \frac {1}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+24 \int \frac {1}{(-2+x) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx-\int \frac {x^2 \left (-1-3 x+x^2\right )}{(-2+x) (1+x) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx\\ &=2 \int x \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right ) \, dx+3 \int \frac {x}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+3 \int \frac {x^2}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+3 \int \frac {x^3}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx-3 \int \frac {1}{(1+x) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+15 \int \frac {1}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+24 \int \frac {1}{(-2+x) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx-\int \left (-\frac {1}{\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}-\frac {4}{(-2+x) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}-\frac {2 x}{\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}+\frac {x^2}{\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}-\frac {1}{(1+x) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )}\right ) \, dx\\ &=2 \int \frac {x}{\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+2 \int x \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right ) \, dx+3 \int \frac {x}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+3 \int \frac {x^2}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+3 \int \frac {x^3}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx-3 \int \frac {1}{(1+x) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+4 \int \frac {1}{(-2+x) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+15 \int \frac {1}{\left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+24 \int \frac {1}{(-2+x) \left (-4 e^x-3 x-2 e^x x+2 e^x x^2\right ) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+\int \frac {1}{\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx-\int \frac {x^2}{\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx+\int \frac {1}{(1+x) \log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 32, normalized size = 0.94 \begin {gather*} x^2 \log \left (\log \left (\frac {1}{3} e^{-2 x} \left (-3 x+2 e^x \left (-2-x+x^2\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 28, normalized size = 0.82 \begin {gather*} x^{2} \log \left (\log \left (\frac {1}{3} \, {\left (2 \, {\left (x^{2} - x - 2\right )} e^{x} - 3 \, x\right )} e^{\left (-2 \, x\right )}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {6 \, x^{3} - 2 \, {\left (3 \, x^{2} - 2 \, {\left (x^{3} - x^{2} - 2 \, x\right )} e^{x}\right )} \log \left (\frac {1}{3} \, {\left (2 \, {\left (x^{2} - x - 2\right )} e^{x} - 3 \, x\right )} e^{\left (-2 \, x\right )}\right ) \log \left (\log \left (\frac {1}{3} \, {\left (2 \, {\left (x^{2} - x - 2\right )} e^{x} - 3 \, x\right )} e^{\left (-2 \, x\right )}\right )\right ) - 3 \, x^{2} - 2 \, {\left (x^{4} - 3 \, x^{3} - x^{2}\right )} e^{x}}{{\left (2 \, {\left (x^{2} - x - 2\right )} e^{x} - 3 \, x\right )} \log \left (\frac {1}{3} \, {\left (2 \, {\left (x^{2} - x - 2\right )} e^{x} - 3 \, x\right )} e^{\left (-2 \, x\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.25, size = 191, normalized size = 5.62
method | result | size |
risch | \(x^{2} \ln \left (\ln \relax (2)-\ln \relax (3)-2 \ln \left ({\mathrm e}^{x}\right )+\ln \left ({\mathrm e}^{x} x^{2}+\left (-{\mathrm e}^{x}-\frac {3}{2}\right ) x -2 \,{\mathrm e}^{x}\right )+\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+\mathrm {csgn}\left (i {\mathrm e}^{x}\right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-2 x} \left ({\mathrm e}^{x} x^{2}+\left (-{\mathrm e}^{x}-\frac {3}{2}\right ) x -2 \,{\mathrm e}^{x}\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{-2 x} \left ({\mathrm e}^{x} x^{2}+\left (-{\mathrm e}^{x}-\frac {3}{2}\right ) x -2 \,{\mathrm e}^{x}\right )\right )+\mathrm {csgn}\left (i {\mathrm e}^{-2 x}\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{-2 x} \left ({\mathrm e}^{x} x^{2}+\left (-{\mathrm e}^{x}-\frac {3}{2}\right ) x -2 \,{\mathrm e}^{x}\right )\right )+\mathrm {csgn}\left (i \left ({\mathrm e}^{x} x^{2}+\left (-{\mathrm e}^{x}-\frac {3}{2}\right ) x -2 \,{\mathrm e}^{x}\right )\right )\right )}{2}\right )\) | \(191\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 30, normalized size = 0.88 \begin {gather*} x^{2} \log \left (-2 \, x - \log \relax (3) + \log \left (2 \, {\left (x^{2} - x - 2\right )} e^{x} - 3 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.59, size = 28, normalized size = 0.82 \begin {gather*} x^2\,\ln \left (\ln \left (-{\mathrm {e}}^{-2\,x}\,\left (x+\frac {{\mathrm {e}}^x\,\left (-2\,x^2+2\,x+4\right )}{3}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.27, size = 27, normalized size = 0.79 \begin {gather*} x^{2} \log {\left (\log {\left (\left (- x + \frac {\left (2 x^{2} - 2 x - 4\right ) e^{x}}{3}\right ) e^{- 2 x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________