Optimal. Leaf size=30 \[ \frac {x^2}{x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 13.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x^3+2 x^2 \log ^2(2)+\left (-5 x^2-6 x^3-x^4+\left (5 x^2+x^3\right ) \log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )+\left (10 x^2+2 x^3+\left (-10 x-2 x^2\right ) \log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \log \left (-x+\log ^2(2)\right )+\left (-10 x^2-2 x^3+\left (10 x+2 x^2\right ) \log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \log \left (\log ^2\left (\frac {3}{5+x}\right )\right )}{\left (-5 x^3-x^4+\left (5 x^2+x^3\right ) \log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )+\left (10 x^2+2 x^3+\left (-10 x-2 x^2\right ) \log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \log \left (-x+\log ^2(2)\right )+\left (-5 x-x^2+(5+x) \log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \log ^2\left (-x+\log ^2(2)\right )+\left (\left (-10 x^2-2 x^3+\left (10 x+2 x^2\right ) \log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )+\left (10 x+2 x^2+(-10-2 x) \log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \log \left (-x+\log ^2(2)\right )\right ) \log \left (\log ^2\left (\frac {3}{5+x}\right )\right )+\left (-5 x-x^2+(5+x) \log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \log ^2\left (\log ^2\left (\frac {3}{5+x}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (2 x \left (x-\log ^2(2)\right )+(5+x) \log \left (\frac {3}{5+x}\right ) \left (x \left (1+x-\log ^2(2)\right )-2 \left (x-\log ^2(2)\right ) \log \left (-x+\log ^2(2)\right )+2 \left (x-\log ^2(2)\right ) \log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )\right )}{(5+x) \left (x-\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2} \, dx\\ &=\int \left (\frac {x^2 \left (2 x-2 \log ^2(2)-x^2 \log \left (\frac {3}{5+x}\right )-4 x \left (1-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{5+x}\right )+5 \left (1+\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )\right )}{(5+x) \left (x-\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2}+\frac {2 x}{x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )}\right ) \, dx\\ &=2 \int \frac {x}{x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )} \, dx+\int \frac {x^2 \left (2 x-2 \log ^2(2)-x^2 \log \left (\frac {3}{5+x}\right )-4 x \left (1-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{5+x}\right )+5 \left (1+\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )\right )}{(5+x) \left (x-\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2} \, dx\\ &=2 \int \frac {x}{x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )} \, dx+\int \frac {x^2 \left (2 x-2 \log ^2(2)-(5+x) \left (-1+x-\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )\right )}{(5+x) \left (x-\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2} \, dx\\ &=2 \int \frac {x}{x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )} \, dx+\int \left (\frac {25 \left (-2 x+2 \log ^2(2)+x^2 \log \left (\frac {3}{5+x}\right )+4 x \left (1-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{5+x}\right )-5 \left (1+\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )\right )}{(5+x) \left (5+\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2}+\frac {2 x-2 \log ^2(2)-x^2 \log \left (\frac {3}{5+x}\right )-4 x \left (1-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{5+x}\right )+5 \left (1+\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )}{\log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2}+\frac {\log ^4(2) \left (2 x-2 \log ^2(2)-x^2 \log \left (\frac {3}{5+x}\right )-4 x \left (1-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{5+x}\right )+5 \left (1+\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )\right )}{\left (x-\log ^2(2)\right ) \left (5+\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {x}{x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )} \, dx+\frac {25 \int \frac {-2 x+2 \log ^2(2)+x^2 \log \left (\frac {3}{5+x}\right )+4 x \left (1-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{5+x}\right )-5 \left (1+\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )}{(5+x) \log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2} \, dx}{5+\log ^2(2)}+\frac {\log ^4(2) \int \frac {2 x-2 \log ^2(2)-x^2 \log \left (\frac {3}{5+x}\right )-4 x \left (1-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{5+x}\right )+5 \left (1+\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )}{\left (x-\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2} \, dx}{5+\log ^2(2)}+\int \frac {2 x-2 \log ^2(2)-x^2 \log \left (\frac {3}{5+x}\right )-4 x \left (1-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{5+x}\right )+5 \left (1+\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )}{\log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2} \, dx\\ &=2 \int \frac {x}{x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )} \, dx+\frac {25 \int \frac {-2 x+2 \log ^2(2)+(5+x) \left (-1+x-\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )}{(5+x) \log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2} \, dx}{5+\log ^2(2)}+\frac {\log ^4(2) \int \frac {2 \left (x-\log ^2(2)\right )-(5+x) \left (-1+x-\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )}{\left (x-\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2} \, dx}{5+\log ^2(2)}+\int \frac {2 \left (x-\log ^2(2)\right )-(5+x) \left (-1+x-\log ^2(2)\right ) \log \left (\frac {3}{5+x}\right )}{\log \left (\frac {3}{5+x}\right ) \left (x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 30, normalized size = 1.00 \begin {gather*} \frac {x^2}{x-\log \left (-x+\log ^2(2)\right )+\log \left (\log ^2\left (\frac {3}{5+x}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 30, normalized size = 1.00 \begin {gather*} \frac {x^{2}}{x - \log \left (\log \relax (2)^{2} - x\right ) + \log \left (\log \left (\frac {3}{x + 5}\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 59.41, size = 1059, normalized size = 35.30 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.90, size = 181, normalized size = 6.03
method | result | size |
risch | \(\frac {2 x^{2}}{-2 i \pi \mathrm {csgn}\left (i \left (-2 i \ln \left (5+x \right )+2 i \ln \relax (3)\right )^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i \left (-2 i \ln \left (5+x \right )+2 i \ln \relax (3)\right )\right )^{2} \mathrm {csgn}\left (i \left (-2 i \ln \left (5+x \right )+2 i \ln \relax (3)\right )^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i \left (-2 i \ln \left (5+x \right )+2 i \ln \relax (3)\right )\right ) \mathrm {csgn}\left (i \left (-2 i \ln \left (5+x \right )+2 i \ln \relax (3)\right )^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i \left (-2 i \ln \left (5+x \right )+2 i \ln \relax (3)\right )^{2}\right )^{3}+2 i \pi -4 \ln \relax (2)+2 x -2 \ln \left (\ln \relax (2)^{2}-x \right )+4 \ln \left (-2 i \ln \left (5+x \right )+2 i \ln \relax (3)\right )}\) | \(181\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 31, normalized size = 1.03 \begin {gather*} \frac {x^{2}}{x - \log \left (\log \relax (2)^{2} - x\right ) + 2 \, \log \left (-\log \relax (3) + \log \left (x + 5\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\ln \left (\frac {3}{x+5}\right )\,\left (5\,x^2-{\ln \relax (2)}^2\,\left (x^3+5\,x^2\right )+6\,x^3+x^4\right )-2\,x^2\,{\ln \relax (2)}^2+2\,x^3-\ln \left (\frac {3}{x+5}\right )\,\ln \left ({\ln \relax (2)}^2-x\right )\,\left (10\,x^2-{\ln \relax (2)}^2\,\left (2\,x^2+10\,x\right )+2\,x^3\right )+\ln \left (\frac {3}{x+5}\right )\,\ln \left ({\ln \left (\frac {3}{x+5}\right )}^2\right )\,\left (10\,x^2-{\ln \relax (2)}^2\,\left (2\,x^2+10\,x\right )+2\,x^3\right )}{\ln \left (\frac {3}{x+5}\right )\,\left (5\,x^3-{\ln \relax (2)}^2\,\left (x^3+5\,x^2\right )+x^4\right )+\ln \left ({\ln \left (\frac {3}{x+5}\right )}^2\right )\,\left (\ln \left (\frac {3}{x+5}\right )\,\left (10\,x^2-{\ln \relax (2)}^2\,\left (2\,x^2+10\,x\right )+2\,x^3\right )-\ln \left (\frac {3}{x+5}\right )\,\ln \left ({\ln \relax (2)}^2-x\right )\,\left (10\,x-{\ln \relax (2)}^2\,\left (2\,x+10\right )+2\,x^2\right )\right )-\ln \left (\frac {3}{x+5}\right )\,\ln \left ({\ln \relax (2)}^2-x\right )\,\left (10\,x^2-{\ln \relax (2)}^2\,\left (2\,x^2+10\,x\right )+2\,x^3\right )+\ln \left (\frac {3}{x+5}\right )\,{\ln \left ({\ln \relax (2)}^2-x\right )}^2\,\left (5\,x-{\ln \relax (2)}^2\,\left (x+5\right )+x^2\right )+\ln \left (\frac {3}{x+5}\right )\,{\ln \left ({\ln \left (\frac {3}{x+5}\right )}^2\right )}^2\,\left (5\,x-{\ln \relax (2)}^2\,\left (x+5\right )+x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.89, size = 22, normalized size = 0.73 \begin {gather*} \frac {x^{2}}{x - \log {\left (- x + \log {\relax (2 )}^{2} \right )} + \log {\left (\log {\left (\frac {3}{x + 5} \right )}^{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________