Optimal. Leaf size=25 \[ \frac {\left (1-\frac {1}{x}\right ) x^2}{x+(2 (5+x)+\log (x))^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-80+184 x+41 x^2+\left (-18+38 x+4 x^2\right ) \log (x)+(-1+2 x) \log ^2(x)}{10000+8200 x+2481 x^2+328 x^3+16 x^4+\left (4000+2440 x+488 x^2+32 x^3\right ) \log (x)+\left (600+242 x+24 x^2\right ) \log ^2(x)+(40+8 x) \log ^3(x)+\log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-80+184 x+41 x^2+2 \left (-9+19 x+2 x^2\right ) \log (x)+(-1+2 x) \log ^2(x)}{\left (100+41 x+4 x^2+4 (5+x) \log (x)+\log ^2(x)\right )^2} \, dx\\ &=\int \left (-\frac {(-1+x) \left (20+45 x+8 x^2+2 \log (x)+4 x \log (x)\right )}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {-1+2 x}{100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)}\right ) \, dx\\ &=-\int \frac {(-1+x) \left (20+45 x+8 x^2+2 \log (x)+4 x \log (x)\right )}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx+\int \frac {-1+2 x}{100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)} \, dx\\ &=-\int \left (\frac {-20-45 x-8 x^2-2 \log (x)-4 x \log (x)}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {x \left (20+45 x+8 x^2+2 \log (x)+4 x \log (x)\right )}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}\right ) \, dx+\int \left (-\frac {1}{100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)}+\frac {2 x}{100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)}\right ) \, dx\\ &=2 \int \frac {x}{100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)} \, dx-\int \frac {-20-45 x-8 x^2-2 \log (x)-4 x \log (x)}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-\int \frac {x \left (20+45 x+8 x^2+2 \log (x)+4 x \log (x)\right )}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-\int \frac {1}{100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)} \, dx\\ &=2 \int \frac {x}{100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)} \, dx-\int \frac {1}{100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)} \, dx-\int \left (-\frac {20}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}-\frac {45 x}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}-\frac {8 x^2}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}-\frac {2 \log (x)}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}-\frac {4 x \log (x)}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}\right ) \, dx-\int \left (\frac {20 x}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {45 x^2}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {8 x^3}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {2 x \log (x)}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {4 x^2 \log (x)}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}\right ) \, dx\\ &=2 \int \frac {\log (x)}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-2 \int \frac {x \log (x)}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx+2 \int \frac {x}{100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)} \, dx+4 \int \frac {x \log (x)}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-4 \int \frac {x^2 \log (x)}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx+8 \int \frac {x^2}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-8 \int \frac {x^3}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx+20 \int \frac {1}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-20 \int \frac {x}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx+45 \int \frac {x}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-45 \int \frac {x^2}{\left (100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-\int \frac {1}{100+41 x+4 x^2+20 \log (x)+4 x \log (x)+\log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 28, normalized size = 1.12 \begin {gather*} \frac {(-1+x) x}{100+41 x+4 x^2+4 (5+x) \log (x)+\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 31, normalized size = 1.24 \begin {gather*} \frac {x^{2} - x}{4 \, x^{2} + 4 \, {\left (x + 5\right )} \log \relax (x) + \log \relax (x)^{2} + 41 \, x + 100} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 33, normalized size = 1.32 \begin {gather*} \frac {x^{2} - x}{4 \, x^{2} + 4 \, x \log \relax (x) + \log \relax (x)^{2} + 41 \, x + 20 \, \log \relax (x) + 100} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 31, normalized size = 1.24
method | result | size |
risch | \(\frac {x \left (x -1\right )}{\ln \relax (x )^{2}+4 x \ln \relax (x )+4 x^{2}+20 \ln \relax (x )+41 x +100}\) | \(31\) |
norman | \(\frac {x^{2}-x}{\ln \relax (x )^{2}+4 x \ln \relax (x )+4 x^{2}+20 \ln \relax (x )+41 x +100}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 31, normalized size = 1.24 \begin {gather*} \frac {x^{2} - x}{4 \, x^{2} + 4 \, {\left (x + 5\right )} \log \relax (x) + \log \relax (x)^{2} + 41 \, x + 100} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {184\,x+\ln \relax (x)\,\left (4\,x^2+38\,x-18\right )+41\,x^2+{\ln \relax (x)}^2\,\left (2\,x-1\right )-80}{8200\,x+{\ln \relax (x)}^2\,\left (24\,x^2+242\,x+600\right )+{\ln \relax (x)}^4+2481\,x^2+328\,x^3+16\,x^4+{\ln \relax (x)}^3\,\left (8\,x+40\right )+\ln \relax (x)\,\left (32\,x^3+488\,x^2+2440\,x+4000\right )+10000} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 27, normalized size = 1.08 \begin {gather*} \frac {x^{2} - x}{4 x^{2} + 41 x + \left (4 x + 20\right ) \log {\relax (x )} + \log {\relax (x )}^{2} + 100} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________