Optimal. Leaf size=23 \[ e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (x \log ^{-\frac {2}{3 x}}\left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right )\right ) \log ^{-1-\frac {2}{3 x}}\left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right ) \left (8 x+\left (-45 x+3 e^5 x-3 x^2\right ) \log \left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right )+\left (-30+2 e^5-2 x\right ) \log \left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right ) \log \left (\log \left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right )\right )\right )}{-45 x+3 e^5 x-3 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (x \log ^{-\frac {2}{3 x}}\left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right )\right ) \log ^{-1-\frac {2}{3 x}}\left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right ) \left (8 x+\left (-45 x+3 e^5 x-3 x^2\right ) \log \left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right )+\left (-30+2 e^5-2 x\right ) \log \left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right ) \log \left (\log \left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right )\right )\right )}{\left (-45+3 e^5\right ) x-3 x^2} \, dx\\ &=\int \frac {\exp \left (x \log ^{-\frac {2}{3 x}}\left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right )\right ) \log ^{-1-\frac {2}{3 x}}\left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right ) \left (8 x+\left (-45 x+3 e^5 x-3 x^2\right ) \log \left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right )+\left (-30+2 e^5-2 x\right ) \log \left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right ) \log \left (\log \left (50625+e^{20}+e^{15} (-60-4 x)+13500 x+1350 x^2+60 x^3+x^4+e^{10} \left (1350+180 x+6 x^2\right )+e^5 \left (-13500-2700 x-180 x^2-4 x^3\right )\right )\right )\right )}{\left (-45+3 e^5-3 x\right ) x} \, dx\\ &=\int \frac {e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-1-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right ) \left (-8 x-\left (-15+e^5-x\right ) \log \left (\left (15-e^5+x\right )^4\right ) \left (3 x+2 \log \left (\log \left (\left (15-e^5+x\right )^4\right )\right )\right )\right )}{3 x \left (15-e^5+x\right )} \, dx\\ &=\frac {1}{3} \int \frac {e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-1-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right ) \left (-8 x-\left (-15+e^5-x\right ) \log \left (\left (15-e^5+x\right )^4\right ) \left (3 x+2 \log \left (\log \left (\left (15-e^5+x\right )^4\right )\right )\right )\right )}{x \left (15-e^5+x\right )} \, dx\\ &=\frac {1}{3} \int \left (\frac {e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-1-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right ) \left (-8+45 \left (1-\frac {e^5}{15}\right ) \log \left (\left (15-e^5+x\right )^4\right )+3 x \log \left (\left (15-e^5+x\right )^4\right )\right )}{15-e^5+x}+\frac {2 e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right ) \log \left (\log \left (\left (15-e^5+x\right )^4\right )\right )}{x}\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-1-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right ) \left (-8+45 \left (1-\frac {e^5}{15}\right ) \log \left (\left (15-e^5+x\right )^4\right )+3 x \log \left (\left (15-e^5+x\right )^4\right )\right )}{15-e^5+x} \, dx+\frac {2}{3} \int \frac {e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right ) \log \left (\log \left (\left (15-e^5+x\right )^4\right )\right )}{x} \, dx\\ &=\frac {1}{3} \int \frac {e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-1-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right ) \left (-8-3 \left (-15+e^5-x\right ) \log \left (\left (15-e^5+x\right )^4\right )\right )}{15-e^5+x} \, dx+\frac {2}{3} \int \frac {e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right ) \log \left (\log \left (\left (15-e^5+x\right )^4\right )\right )}{x} \, dx\\ &=\frac {1}{3} \int \left (\frac {8 e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-1-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )}{-15+e^5-x}+3 e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )\right ) \, dx+\frac {2}{3} \int \frac {e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right ) \log \left (\log \left (\left (15-e^5+x\right )^4\right )\right )}{x} \, dx\\ &=\frac {2}{3} \int \frac {e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right ) \log \left (\log \left (\left (15-e^5+x\right )^4\right )\right )}{x} \, dx+\frac {8}{3} \int \frac {e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-1-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )}{-15+e^5-x} \, dx+\int e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 23, normalized size = 1.00 \begin {gather*} e^{x \log ^{-\frac {2}{3 x}}\left (\left (15-e^5+x\right )^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.15, size = 68, normalized size = 2.96 \begin {gather*} e^{\left (\frac {x}{\log \left (x^{4} + 60 \, x^{3} + 1350 \, x^{2} - 4 \, {\left (x + 15\right )} e^{15} + 6 \, {\left (x^{2} + 30 \, x + 225\right )} e^{10} - 4 \, {\left (x^{3} + 45 \, x^{2} + 675 \, x + 3375\right )} e^{5} + 13500 \, x + e^{20} + 50625\right )^{\frac {2}{3 \, x}}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.21, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (2 \,{\mathrm e}^{5}-2 x -30\right ) \ln \left ({\mathrm e}^{20}+\left (-4 x -60\right ) {\mathrm e}^{15}+\left (6 x^{2}+180 x +1350\right ) {\mathrm e}^{10}+\left (-4 x^{3}-180 x^{2}-2700 x -13500\right ) {\mathrm e}^{5}+x^{4}+60 x^{3}+1350 x^{2}+13500 x +50625\right ) \ln \left (\ln \left ({\mathrm e}^{20}+\left (-4 x -60\right ) {\mathrm e}^{15}+\left (6 x^{2}+180 x +1350\right ) {\mathrm e}^{10}+\left (-4 x^{3}-180 x^{2}-2700 x -13500\right ) {\mathrm e}^{5}+x^{4}+60 x^{3}+1350 x^{2}+13500 x +50625\right )\right )+\left (3 x \,{\mathrm e}^{5}-3 x^{2}-45 x \right ) \ln \left ({\mathrm e}^{20}+\left (-4 x -60\right ) {\mathrm e}^{15}+\left (6 x^{2}+180 x +1350\right ) {\mathrm e}^{10}+\left (-4 x^{3}-180 x^{2}-2700 x -13500\right ) {\mathrm e}^{5}+x^{4}+60 x^{3}+1350 x^{2}+13500 x +50625\right )+8 x \right ) {\mathrm e}^{x \,{\mathrm e}^{\frac {\ln \left (\frac {1}{\ln \left ({\mathrm e}^{20}+\left (-4 x -60\right ) {\mathrm e}^{15}+\left (6 x^{2}+180 x +1350\right ) {\mathrm e}^{10}+\left (-4 x^{3}-180 x^{2}-2700 x -13500\right ) {\mathrm e}^{5}+x^{4}+60 x^{3}+1350 x^{2}+13500 x +50625\right )^{\frac {2}{3}}}\right )}{x}}} {\mathrm e}^{\frac {\ln \left (\frac {1}{\ln \left ({\mathrm e}^{20}+\left (-4 x -60\right ) {\mathrm e}^{15}+\left (6 x^{2}+180 x +1350\right ) {\mathrm e}^{10}+\left (-4 x^{3}-180 x^{2}-2700 x -13500\right ) {\mathrm e}^{5}+x^{4}+60 x^{3}+1350 x^{2}+13500 x +50625\right )^{\frac {2}{3}}}\right )}{x}}}{\left (3 x \,{\mathrm e}^{5}-3 x^{2}-45 x \right ) \ln \left ({\mathrm e}^{20}+\left (-4 x -60\right ) {\mathrm e}^{15}+\left (6 x^{2}+180 x +1350\right ) {\mathrm e}^{10}+\left (-4 x^{3}-180 x^{2}-2700 x -13500\right ) {\mathrm e}^{5}+x^{4}+60 x^{3}+1350 x^{2}+13500 x +50625\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 26, normalized size = 1.13 \begin {gather*} e^{\left (x e^{\left (-\frac {4 \, \log \relax (2)}{3 \, x} - \frac {2 \, \log \left (\log \left (x - e^{5} + 15\right )\right )}{3 \, x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.88, size = 80, normalized size = 3.48 \begin {gather*} {\mathrm {e}}^{\frac {x}{{\ln \left (13500\,x-13500\,{\mathrm {e}}^5+1350\,{\mathrm {e}}^{10}-60\,{\mathrm {e}}^{15}+{\mathrm {e}}^{20}-2700\,x\,{\mathrm {e}}^5+180\,x\,{\mathrm {e}}^{10}-4\,x\,{\mathrm {e}}^{15}-180\,x^2\,{\mathrm {e}}^5-4\,x^3\,{\mathrm {e}}^5+6\,x^2\,{\mathrm {e}}^{10}+1350\,x^2+60\,x^3+x^4+50625\right )}^{\frac {2}{3\,x}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________