Optimal. Leaf size=25 \[ \frac {4 e^{-\frac {3 x^2}{-4 e^x x+x \log (4)}}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 3.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {3 x^2}{4 e^x x-x \log (4)}} \left (-64 e^{2 x} x^2-12 x^3 \log (4)-4 x^2 \log ^2(4)+e^x x \left (48 x^2-48 x^3+32 x \log (4)\right )\right )}{16 e^{2 x} x^4-8 e^x x^4 \log (4)+x^4 \log ^2(4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^{\frac {3 x}{4 e^x-\log (4)}} \left (-16 e^{2 x}-4 e^x \left (-3 x+3 x^2-2 \log (4)\right )-\log (4) (3 x+\log (4))\right )}{x^2 \left (4 e^x-\log (4)\right )^2} \, dx\\ &=4 \int \frac {e^{\frac {3 x}{4 e^x-\log (4)}} \left (-16 e^{2 x}-4 e^x \left (-3 x+3 x^2-2 \log (4)\right )-\log (4) (3 x+\log (4))\right )}{x^2 \left (4 e^x-\log (4)\right )^2} \, dx\\ &=4 \int \left (-\frac {e^{\frac {3 x}{4 e^x-\log (4)}}}{x^2}-\frac {3 e^{\frac {3 x}{4 e^x-\log (4)}} (-1+x)}{x \left (4 e^x-\log (4)\right )}-\frac {3 e^{\frac {3 x}{4 e^x-\log (4)}} \log (4)}{\left (4 e^x-\log (4)\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {e^{\frac {3 x}{4 e^x-\log (4)}}}{x^2} \, dx\right )-12 \int \frac {e^{\frac {3 x}{4 e^x-\log (4)}} (-1+x)}{x \left (4 e^x-\log (4)\right )} \, dx-(12 \log (4)) \int \frac {e^{\frac {3 x}{4 e^x-\log (4)}}}{\left (4 e^x-\log (4)\right )^2} \, dx\\ &=-\left (4 \int \frac {e^{\frac {3 x}{4 e^x-\log (4)}}}{x^2} \, dx\right )-12 \int \left (\frac {e^{\frac {3 x}{4 e^x-\log (4)}}}{4 e^x-\log (4)}-\frac {e^{\frac {3 x}{4 e^x-\log (4)}}}{x \left (4 e^x-\log (4)\right )}\right ) \, dx-(12 \log (4)) \int \frac {e^{\frac {3 x}{4 e^x-\log (4)}}}{\left (4 e^x-\log (4)\right )^2} \, dx\\ &=-\left (4 \int \frac {e^{\frac {3 x}{4 e^x-\log (4)}}}{x^2} \, dx\right )-12 \int \frac {e^{\frac {3 x}{4 e^x-\log (4)}}}{4 e^x-\log (4)} \, dx+12 \int \frac {e^{\frac {3 x}{4 e^x-\log (4)}}}{x \left (4 e^x-\log (4)\right )} \, dx-(12 \log (4)) \int \frac {e^{\frac {3 x}{4 e^x-\log (4)}}}{\left (4 e^x-\log (4)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.73, size = 22, normalized size = 0.88 \begin {gather*} \frac {4 e^{\frac {3 x}{4 e^x-\log (4)}}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 25, normalized size = 1.00 \begin {gather*} \frac {4 \, e^{\left (-\frac {3 \, x^{2}}{2 \, {\left (x \log \relax (2) - 2 \, e^{\left (x + \log \relax (x)\right )}\right )}}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.62, size = 35, normalized size = 1.40 \begin {gather*} \frac {4 \, e^{\left (x - \frac {4 \, x e^{x} - 2 \, x \log \relax (2) - 3 \, x}{2 \, {\left (2 \, e^{x} - \log \relax (2)\right )}}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 21, normalized size = 0.84
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{\frac {3 x}{2 \left (2 \,{\mathrm e}^{x}-\ln \relax (2)\right )}}}{x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, \int -\frac {{\left (3 \, x^{3} \log \relax (2) + 2 \, x^{2} \log \relax (2)^{2} + 8 \, x^{2} e^{\left (2 \, x\right )} + 2 \, {\left (3 \, x^{3} - 3 \, x^{2} - 4 \, x \log \relax (2)\right )} x e^{x}\right )} e^{\left (\frac {3 \, x^{2}}{2 \, {\left (2 \, x e^{x} - x \log \relax (2)\right )}}\right )}}{4 \, x^{4} e^{x} \log \relax (2) - x^{4} \log \relax (2)^{2} - 4 \, x^{4} e^{\left (2 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{\frac {3\,x^2}{4\,{\mathrm {e}}^{x+\ln \relax (x)}-2\,x\,\ln \relax (2)}}\,\left (64\,{\mathrm {e}}^{2\,x+2\,\ln \relax (x)}+16\,x^2\,{\ln \relax (2)}^2-{\mathrm {e}}^{x+\ln \relax (x)}\,\left (-48\,x^3+48\,x^2+64\,\ln \relax (2)\,x\right )+24\,x^3\,\ln \relax (2)\right )}{4\,x^4\,{\ln \relax (2)}^2+16\,x^2\,{\mathrm {e}}^{2\,x+2\,\ln \relax (x)}-16\,x^3\,{\mathrm {e}}^{x+\ln \relax (x)}\,\ln \relax (2)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 22, normalized size = 0.88 \begin {gather*} \frac {4 e^{\frac {3 x^{2}}{4 x e^{x} - 2 x \log {\relax (2 )}}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________