Optimal. Leaf size=26 \[ -x+\left (-1+e^x-\frac {5 \log \left (3+e^3 (1+x)\right )}{x}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 4.52, antiderivative size = 218, normalized size of antiderivative = 8.38, number of steps used = 41, number of rules used = 24, integrand size = 181, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {6741, 6742, 2194, 6688, 2178, 2197, 2554, 893, 2418, 2395, 36, 29, 31, 2392, 2391, 2390, 2301, 2398, 2411, 2347, 2344, 2316, 2315, 2314} \begin {gather*} \frac {25 \log ^2\left (e^3 x+e^3+3\right )}{x^2}-2 e^x+e^{2 x}-x-\frac {10 e^x \log \left (e^3 x+e^3+3\right )}{x}+\frac {10 \left (3-4 e^3\right ) \log \left (e^3 x+e^3+3\right )}{\left (3+e^3\right ) x}-\frac {10 e^3 \log \left (e^3 x+e^3+3\right )}{3+e^3}+\frac {10 e^3 \left (3-4 e^3\right ) \log \left (e^3 x+e^3+3\right )}{\left (3+e^3\right )^2}+\frac {10 e^3 \log (x)}{3+e^3}-\frac {10 e^3 \left (3-4 e^3\right ) \log (x)}{\left (3+e^3\right )^2}-\frac {50 e^6 \log (x)}{\left (3+e^3\right )^2}+\frac {50 e^3 \left (e^3 x+e^3+3\right ) \log \left (e^3 (x+1)+3\right )}{\left (3+e^3\right )^2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 893
Rule 2178
Rule 2194
Rule 2197
Rule 2301
Rule 2314
Rule 2315
Rule 2316
Rule 2344
Rule 2347
Rule 2390
Rule 2391
Rule 2392
Rule 2395
Rule 2398
Rule 2411
Rule 2418
Rule 2554
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 x^3+e^3 \left (10 x^2-x^3-x^4\right )+e^x \left (-6 x^3+e^3 \left (-10 x^2-2 x^3-2 x^4\right )\right )+e^{2 x} \left (6 x^3+e^3 \left (2 x^3+2 x^4\right )\right )+\left (-30 x+e^3 \left (40 x-10 x^2\right )+e^x \left (30 x-30 x^2+e^3 \left (10 x-10 x^3\right )\right )\right ) \log \left (3+e^3 (1+x)\right )+\left (-150+e^3 (-50-50 x)\right ) \log ^2\left (3+e^3 (1+x)\right )}{x^3 \left (3+e^3+e^3 x\right )} \, dx\\ &=\int \left (2 e^{2 x}+\frac {2 e^x \left (-5 e^3 x-3 \left (1+\frac {e^3}{3}\right ) x^2-e^3 x^3+15 \left (1+\frac {e^3}{3}\right ) \log \left (3+e^3 (1+x)\right )-15 x \log \left (3+e^3 (1+x)\right )-5 e^3 x^2 \log \left (3+e^3 (1+x)\right )\right )}{x^2 \left (3+e^3+e^3 x\right )}+\frac {10 e^3 x^2-3 \left (1+\frac {e^3}{3}\right ) x^3-e^3 x^4-30 \left (1-\frac {4 e^3}{3}\right ) x \log \left (3+e^3 (1+x)\right )-10 e^3 x^2 \log \left (3+e^3 (1+x)\right )-150 \left (1+\frac {e^3}{3}\right ) \log ^2\left (3+e^3 (1+x)\right )-50 e^3 x \log ^2\left (3+e^3 (1+x)\right )}{x^3 \left (3+e^3+e^3 x\right )}\right ) \, dx\\ &=2 \int e^{2 x} \, dx+2 \int \frac {e^x \left (-5 e^3 x-3 \left (1+\frac {e^3}{3}\right ) x^2-e^3 x^3+15 \left (1+\frac {e^3}{3}\right ) \log \left (3+e^3 (1+x)\right )-15 x \log \left (3+e^3 (1+x)\right )-5 e^3 x^2 \log \left (3+e^3 (1+x)\right )\right )}{x^2 \left (3+e^3+e^3 x\right )} \, dx+\int \frac {10 e^3 x^2-3 \left (1+\frac {e^3}{3}\right ) x^3-e^3 x^4-30 \left (1-\frac {4 e^3}{3}\right ) x \log \left (3+e^3 (1+x)\right )-10 e^3 x^2 \log \left (3+e^3 (1+x)\right )-150 \left (1+\frac {e^3}{3}\right ) \log ^2\left (3+e^3 (1+x)\right )-50 e^3 x \log ^2\left (3+e^3 (1+x)\right )}{x^3 \left (3+e^3+e^3 x\right )} \, dx\\ &=e^{2 x}+2 \int \frac {e^x \left (-x \left (3 x+e^3 \left (5+x+x^2\right )\right )-5 \left (3 (-1+x)+e^3 \left (-1+x^2\right )\right ) \log \left (3+e^3 (1+x)\right )\right )}{x^2 \left (3+e^3+e^3 x\right )} \, dx+\int \frac {-x^2 \left (3 x+e^3 \left (-10+x+x^2\right )\right )-10 \left (3+e^3 (-4+x)\right ) x \log \left (3+e^3 (1+x)\right )-50 \left (3+e^3 (1+x)\right ) \log ^2\left (3+e^3 (1+x)\right )}{x^3 \left (3+e^3+e^3 x\right )} \, dx\\ &=e^{2 x}+2 \int \left (\frac {e^x \left (-5 e^3-\left (3+e^3\right ) x-e^3 x^2\right )}{x \left (3+e^3+e^3 x\right )}+\frac {5 e^x (1-x) \log \left (3+e^3+e^3 x\right )}{x^2}\right ) \, dx+\int \left (\frac {10 e^3-\left (3+e^3\right ) x-e^3 x^2}{x \left (3+e^3+e^3 x\right )}+\frac {10 \left (-3+4 e^3-e^3 x\right ) \log \left (3+e^3+e^3 x\right )}{x^2 \left (3+e^3+e^3 x\right )}-\frac {50 \log ^2\left (3+e^3+e^3 x\right )}{x^3}\right ) \, dx\\ &=e^{2 x}+2 \int \frac {e^x \left (-5 e^3-\left (3+e^3\right ) x-e^3 x^2\right )}{x \left (3+e^3+e^3 x\right )} \, dx+10 \int \frac {e^x (1-x) \log \left (3+e^3+e^3 x\right )}{x^2} \, dx+10 \int \frac {\left (-3+4 e^3-e^3 x\right ) \log \left (3+e^3+e^3 x\right )}{x^2 \left (3+e^3+e^3 x\right )} \, dx-50 \int \frac {\log ^2\left (3+e^3+e^3 x\right )}{x^3} \, dx+\int \frac {10 e^3-\left (3+e^3\right ) x-e^3 x^2}{x \left (3+e^3+e^3 x\right )} \, dx\\ &=e^{2 x}-\frac {10 e^x \log \left (3+e^3+e^3 x\right )}{x}+\frac {25 \log ^2\left (3+e^3+e^3 x\right )}{x^2}+2 \int \left (-e^x-\frac {5 e^{3+x}}{\left (3+e^3\right ) x}+\frac {5 e^{6+x}}{\left (3+e^3\right ) \left (3+e^3+e^3 x\right )}\right ) \, dx+10 \int \frac {e^{3+x}}{x \left (3+e^3+e^3 x\right )} \, dx+10 \int \left (\frac {\left (-3+4 e^3\right ) \log \left (3+e^3+e^3 x\right )}{\left (3+e^3\right ) x^2}-\frac {5 e^6 \log \left (3+e^3+e^3 x\right )}{\left (3+e^3\right )^2 x}+\frac {5 e^9 \log \left (3+e^3+e^3 x\right )}{\left (3+e^3\right )^2 \left (3+e^3+e^3 x\right )}\right ) \, dx-\left (50 e^3\right ) \int \frac {\log \left (3+e^3+e^3 x\right )}{x^2 \left (3+e^3+e^3 x\right )} \, dx+\int \left (-1+\frac {10 e^3}{\left (3+e^3\right ) x}-\frac {10 e^6}{\left (3+e^3\right ) \left (3+e^3+e^3 x\right )}\right ) \, dx\\ &=e^{2 x}-x+\frac {10 e^3 \log (x)}{3+e^3}-\frac {10 e^3 \log \left (3+e^3+e^3 x\right )}{3+e^3}-\frac {10 e^x \log \left (3+e^3+e^3 x\right )}{x}+\frac {25 \log ^2\left (3+e^3+e^3 x\right )}{x^2}-2 \int e^x \, dx+10 \int \left (\frac {e^{3+x}}{\left (3+e^3\right ) x}-\frac {e^{6+x}}{\left (3+e^3\right ) \left (3+e^3+e^3 x\right )}\right ) \, dx-50 \operatorname {Subst}\left (\int \frac {\log (x)}{x \left (\frac {-3-e^3}{e^3}+\frac {x}{e^3}\right )^2} \, dx,x,3+e^3+e^3 x\right )-\frac {\left (50 e^6\right ) \int \frac {\log \left (3+e^3+e^3 x\right )}{x} \, dx}{\left (3+e^3\right )^2}+\frac {\left (50 e^9\right ) \int \frac {\log \left (3+e^3+e^3 x\right )}{3+e^3+e^3 x} \, dx}{\left (3+e^3\right )^2}-\frac {10 \int \frac {e^{3+x}}{x} \, dx}{3+e^3}+\frac {10 \int \frac {e^{6+x}}{3+e^3+e^3 x} \, dx}{3+e^3}-\frac {\left (10 \left (3-4 e^3\right )\right ) \int \frac {\log \left (3+e^3+e^3 x\right )}{x^2} \, dx}{3+e^3}\\ &=-2 e^x+e^{2 x}-x-\frac {10 e^3 \text {Ei}(x)}{3+e^3}+\frac {10 e^{2-\frac {3}{e^3}} \text {Ei}\left (\frac {3+e^3+e^3 x}{e^3}\right )}{3+e^3}+\frac {10 e^3 \log (x)}{3+e^3}-\frac {50 e^6 \log \left (3+e^3\right ) \log (x)}{\left (3+e^3\right )^2}-\frac {10 e^3 \log \left (3+e^3+e^3 x\right )}{3+e^3}-\frac {10 e^x \log \left (3+e^3+e^3 x\right )}{x}+\frac {10 \left (3-4 e^3\right ) \log \left (3+e^3+e^3 x\right )}{\left (3+e^3\right ) x}+\frac {25 \log ^2\left (3+e^3+e^3 x\right )}{x^2}-\frac {\left (50 e^6\right ) \int \frac {\log \left (1+\frac {e^3 x}{3+e^3}\right )}{x} \, dx}{\left (3+e^3\right )^2}+\frac {\left (50 e^6\right ) \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,3+e^3+e^3 x\right )}{\left (3+e^3\right )^2}+\frac {10 \int \frac {e^{3+x}}{x} \, dx}{3+e^3}-\frac {10 \int \frac {e^{6+x}}{3+e^3+e^3 x} \, dx}{3+e^3}-\frac {50 \operatorname {Subst}\left (\int \frac {\log (x)}{\left (\frac {-3-e^3}{e^3}+\frac {x}{e^3}\right )^2} \, dx,x,3+e^3+e^3 x\right )}{3+e^3}+\frac {\left (50 e^3\right ) \operatorname {Subst}\left (\int \frac {\log (x)}{x \left (\frac {-3-e^3}{e^3}+\frac {x}{e^3}\right )} \, dx,x,3+e^3+e^3 x\right )}{3+e^3}-\frac {\left (10 e^3 \left (3-4 e^3\right )\right ) \int \frac {1}{x \left (3+e^3+e^3 x\right )} \, dx}{3+e^3}\\ &=-2 e^x+e^{2 x}-x+\frac {10 e^3 \log (x)}{3+e^3}-\frac {50 e^6 \log \left (3+e^3\right ) \log (x)}{\left (3+e^3\right )^2}-\frac {10 e^3 \log \left (3+e^3+e^3 x\right )}{3+e^3}-\frac {10 e^x \log \left (3+e^3+e^3 x\right )}{x}+\frac {10 \left (3-4 e^3\right ) \log \left (3+e^3+e^3 x\right )}{\left (3+e^3\right ) x}+\frac {25 \log ^2\left (3+e^3+e^3 x\right )}{x^2}+\frac {50 e^3 \left (3+e^3+e^3 x\right ) \log \left (3+e^3 (1+x)\right )}{\left (3+e^3\right )^2 x}+\frac {25 e^6 \log ^2\left (3+e^3 (1+x)\right )}{\left (3+e^3\right )^2}+\frac {50 e^6 \text {Li}_2\left (-\frac {e^3 x}{3+e^3}\right )}{\left (3+e^3\right )^2}-\frac {\left (50 e^3\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {-3-e^3}{e^3}+\frac {x}{e^3}} \, dx,x,3+e^3+e^3 x\right )}{\left (3+e^3\right )^2}+\frac {\left (50 e^3\right ) \operatorname {Subst}\left (\int \frac {\log (x)}{\frac {-3-e^3}{e^3}+\frac {x}{e^3}} \, dx,x,3+e^3+e^3 x\right )}{\left (3+e^3\right )^2}-\frac {\left (50 e^6\right ) \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,3+e^3+e^3 x\right )}{\left (3+e^3\right )^2}-\frac {\left (10 e^3 \left (3-4 e^3\right )\right ) \int \frac {1}{x} \, dx}{\left (3+e^3\right )^2}+\frac {\left (10 e^6 \left (3-4 e^3\right )\right ) \int \frac {1}{3+e^3+e^3 x} \, dx}{\left (3+e^3\right )^2}\\ &=-2 e^x+e^{2 x}-x-\frac {50 e^6 \log (x)}{\left (3+e^3\right )^2}-\frac {10 e^3 \left (3-4 e^3\right ) \log (x)}{\left (3+e^3\right )^2}+\frac {10 e^3 \log (x)}{3+e^3}+\frac {10 e^3 \left (3-4 e^3\right ) \log \left (3+e^3+e^3 x\right )}{\left (3+e^3\right )^2}-\frac {10 e^3 \log \left (3+e^3+e^3 x\right )}{3+e^3}-\frac {10 e^x \log \left (3+e^3+e^3 x\right )}{x}+\frac {10 \left (3-4 e^3\right ) \log \left (3+e^3+e^3 x\right )}{\left (3+e^3\right ) x}+\frac {25 \log ^2\left (3+e^3+e^3 x\right )}{x^2}+\frac {50 e^3 \left (3+e^3+e^3 x\right ) \log \left (3+e^3 (1+x)\right )}{\left (3+e^3\right )^2 x}+\frac {50 e^6 \text {Li}_2\left (-\frac {e^3 x}{3+e^3}\right )}{\left (3+e^3\right )^2}+\frac {\left (50 e^3\right ) \operatorname {Subst}\left (\int \frac {\log \left (-\frac {x}{-3-e^3}\right )}{\frac {-3-e^3}{e^3}+\frac {x}{e^3}} \, dx,x,3+e^3+e^3 x\right )}{\left (3+e^3\right )^2}\\ &=-2 e^x+e^{2 x}-x-\frac {50 e^6 \log (x)}{\left (3+e^3\right )^2}-\frac {10 e^3 \left (3-4 e^3\right ) \log (x)}{\left (3+e^3\right )^2}+\frac {10 e^3 \log (x)}{3+e^3}+\frac {10 e^3 \left (3-4 e^3\right ) \log \left (3+e^3+e^3 x\right )}{\left (3+e^3\right )^2}-\frac {10 e^3 \log \left (3+e^3+e^3 x\right )}{3+e^3}-\frac {10 e^x \log \left (3+e^3+e^3 x\right )}{x}+\frac {10 \left (3-4 e^3\right ) \log \left (3+e^3+e^3 x\right )}{\left (3+e^3\right ) x}+\frac {25 \log ^2\left (3+e^3+e^3 x\right )}{x^2}+\frac {50 e^3 \left (3+e^3+e^3 x\right ) \log \left (3+e^3 (1+x)\right )}{\left (3+e^3\right )^2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 51, normalized size = 1.96 \begin {gather*} -2 e^x+e^{2 x}-x-\frac {10 \left (-1+e^x\right ) \log \left (3+e^3 (1+x)\right )}{x}+\frac {25 \log ^2\left (3+e^3 (1+x)\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 57, normalized size = 2.19 \begin {gather*} -\frac {x^{3} - x^{2} e^{\left (2 \, x\right )} + 2 \, x^{2} e^{x} + 10 \, {\left (x e^{x} - x\right )} \log \left ({\left (x + 1\right )} e^{3} + 3\right ) - 25 \, \log \left ({\left (x + 1\right )} e^{3} + 3\right )^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 64, normalized size = 2.46 \begin {gather*} -\frac {x^{3} - x^{2} e^{\left (2 \, x\right )} + 2 \, x^{2} e^{x} + 10 \, x e^{x} \log \left (x e^{3} + e^{3} + 3\right ) - 10 \, x \log \left (x e^{3} + e^{3} + 3\right ) - 25 \, \log \left (x e^{3} + e^{3} + 3\right )^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.40, size = 47, normalized size = 1.81
method | result | size |
risch | \(\frac {25 \ln \left (\left (x +1\right ) {\mathrm e}^{3}+3\right )^{2}}{x^{2}}-\frac {10 \left ({\mathrm e}^{x}-1\right ) \ln \left (\left (x +1\right ) {\mathrm e}^{3}+3\right )}{x}+{\mathrm e}^{2 x}-x -2 \,{\mathrm e}^{x}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} {\left ({\left (e^{3} + 3\right )} e^{\left (-6\right )} \log \left (x e^{3} + e^{3} + 3\right ) - x e^{\left (-3\right )}\right )} e^{3} - 10 \, {\left (\frac {\log \left (x e^{3} + e^{3} + 3\right )}{e^{3} + 3} - \frac {\log \relax (x)}{e^{3} + 3}\right )} e^{3} + 6 \, e^{\left (-{\left (e^{3} + 3\right )} e^{\left (-3\right )} - 3\right )} E_{1}\left (-{\left (x e^{3} + e^{3} + 3\right )} e^{\left (-3\right )}\right ) - 6 \, e^{\left (-2 \, {\left (e^{3} + 3\right )} e^{\left (-3\right )} - 3\right )} E_{1}\left (-2 \, {\left (x e^{3} + e^{3} + 3\right )} e^{\left (-3\right )}\right ) - 3 \, e^{\left (-3\right )} \log \left (x e^{3} + e^{3} + 3\right ) - \frac {10 \, e^{3} \log \relax (x)}{e^{3} + 3} + \frac {x^{3} {\left (e^{6} + 3 \, e^{3}\right )} e^{\left (2 \, x\right )} - 2 \, x^{3} {\left (e^{6} + 3 \, e^{3}\right )} e^{x} + 25 \, {\left (x {\left (e^{6} + 3 \, e^{3}\right )} + e^{6} + 6 \, e^{3} + 9\right )} \log \left (x e^{3} + e^{3} + 3\right )^{2} + 10 \, {\left (x^{3} e^{6} + 2 \, x^{2} {\left (e^{6} + 3 \, e^{3}\right )} + x {\left (e^{6} + 6 \, e^{3} + 9\right )} - {\left (x^{2} {\left (e^{6} + 3 \, e^{3}\right )} + x {\left (e^{6} + 6 \, e^{3} + 9\right )}\right )} e^{x}\right )} \log \left (x e^{3} + e^{3} + 3\right )}{x^{3} {\left (e^{6} + 3 \, e^{3}\right )} + x^{2} {\left (e^{6} + 6 \, e^{3} + 9\right )}} + \int \frac {{\left (2 \, x e^{6} + e^{6} + 3 \, e^{3}\right )} e^{\left (2 \, x\right )}}{x^{2} e^{6} + 2 \, x {\left (e^{6} + 3 \, e^{3}\right )} + e^{6} + 6 \, e^{3} + 9}\,{d x} - 2 \, \int \frac {x e^{\left (x + 6\right )}}{x^{2} e^{6} + 2 \, x {\left (e^{6} + 3 \, e^{3}\right )} + e^{6} + 6 \, e^{3} + 9}\,{d x} - \log \left (x e^{3} + e^{3} + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^3\,\left (x^4+x^3-10\,x^2\right )-\ln \left ({\mathrm {e}}^3\,\left (x+1\right )+3\right )\,\left ({\mathrm {e}}^3\,\left (40\,x-10\,x^2\right )-30\,x+{\mathrm {e}}^x\,\left (30\,x+{\mathrm {e}}^3\,\left (10\,x-10\,x^3\right )-30\,x^2\right )\right )+{\ln \left ({\mathrm {e}}^3\,\left (x+1\right )+3\right )}^2\,\left ({\mathrm {e}}^3\,\left (50\,x+50\right )+150\right )+{\mathrm {e}}^x\,\left ({\mathrm {e}}^3\,\left (2\,x^4+2\,x^3+10\,x^2\right )+6\,x^3\right )-{\mathrm {e}}^{2\,x}\,\left ({\mathrm {e}}^3\,\left (2\,x^4+2\,x^3\right )+6\,x^3\right )+3\,x^3}{{\mathrm {e}}^3\,\left (x^4+x^3\right )+3\,x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.60, size = 60, normalized size = 2.31 \begin {gather*} - x + \frac {x e^{2 x} + \left (- 2 x - 10 \log {\left (\left (x + 1\right ) e^{3} + 3 \right )}\right ) e^{x}}{x} + \frac {10 \log {\left (\left (x + 1\right ) e^{3} + 3 \right )}}{x} + \frac {25 \log {\left (\left (x + 1\right ) e^{3} + 3 \right )}^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________