Optimal. Leaf size=21 \[ \left (e^{x+x^3}+x (2 x-x \log (5))\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.15, antiderivative size = 56, normalized size of antiderivative = 2.67, number of steps used = 7, number of rules used = 5, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {6, 6706, 6688, 12, 2288} \begin {gather*} x^4 (2-\log (5))^2+e^{2 x^3+2 x}+\frac {2 e^{x^3+x} \left (3 x^3+x\right ) x (2-\log (5))}{3 x^2+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2288
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{2 x+2 x^3} \left (2+6 x^2\right )+x^3 (16-16 \log (5))+4 x^3 \log ^2(5)+e^{x+x^3} \left (8 x+4 x^2+12 x^4+\left (-4 x-2 x^2-6 x^4\right ) \log (5)\right )\right ) \, dx\\ &=\int \left (e^{2 x+2 x^3} \left (2+6 x^2\right )+e^{x+x^3} \left (8 x+4 x^2+12 x^4+\left (-4 x-2 x^2-6 x^4\right ) \log (5)\right )+x^3 \left (16-16 \log (5)+4 \log ^2(5)\right )\right ) \, dx\\ &=x^4 (2-\log (5))^2+\int e^{2 x+2 x^3} \left (2+6 x^2\right ) \, dx+\int e^{x+x^3} \left (8 x+4 x^2+12 x^4+\left (-4 x-2 x^2-6 x^4\right ) \log (5)\right ) \, dx\\ &=e^{2 x+2 x^3}+x^4 (2-\log (5))^2+\int 2 e^{x+x^3} x \left (2+x+3 x^3\right ) (2-\log (5)) \, dx\\ &=e^{2 x+2 x^3}+x^4 (2-\log (5))^2+(2 (2-\log (5))) \int e^{x+x^3} x \left (2+x+3 x^3\right ) \, dx\\ &=e^{2 x+2 x^3}+\frac {2 e^{x+x^3} x \left (x+3 x^3\right ) (2-\log (5))}{1+3 x^2}+x^4 (2-\log (5))^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 19, normalized size = 0.90 \begin {gather*} \left (e^{x+x^3}-x^2 (-2+\log (5))\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 51, normalized size = 2.43 \begin {gather*} x^{4} \log \relax (5)^{2} - 4 \, x^{4} \log \relax (5) + 4 \, x^{4} - 2 \, {\left (x^{2} \log \relax (5) - 2 \, x^{2}\right )} e^{\left (x^{3} + x\right )} + e^{\left (2 \, x^{3} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 55, normalized size = 2.62 \begin {gather*} x^{4} \log \relax (5)^{2} - 4 \, x^{4} \log \relax (5) + 4 \, x^{4} - 2 \, x^{2} e^{\left (x^{3} + x\right )} \log \relax (5) + 4 \, x^{2} e^{\left (x^{3} + x\right )} + e^{\left (2 \, x^{3} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 40, normalized size = 1.90
method | result | size |
norman | \({\mathrm e}^{2 x^{3}+2 x}+\left (\ln \relax (5)^{2}-4 \ln \relax (5)+4\right ) x^{4}+{\mathrm e}^{x^{3}+x} \left (-2 \ln \relax (5)+4\right ) x^{2}\) | \(40\) |
default | \({\mathrm e}^{x^{3}+x} \left (-2 \ln \relax (5)+4\right ) x^{2}+{\mathrm e}^{2 x^{3}+2 x}+4 x^{4}-4 x^{4} \ln \relax (5)+x^{4} \ln \relax (5)^{2}\) | \(46\) |
risch | \({\mathrm e}^{2 x \left (x^{2}+1\right )}-2 \left (\ln \relax (5)-2\right ) x^{2} {\mathrm e}^{x \left (x^{2}+1\right )}+x^{4} \ln \relax (5)^{2}-4 x^{4} \ln \relax (5)+4 x^{4}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 46, normalized size = 2.19 \begin {gather*} x^{4} \log \relax (5)^{2} - 4 \, x^{4} \log \relax (5) + 4 \, x^{4} - 2 \, x^{2} {\left (\log \relax (5) - 2\right )} e^{\left (x^{3} + x\right )} + e^{\left (2 \, x^{3} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 40, normalized size = 1.90 \begin {gather*} {\mathrm {e}}^{2\,x^3+2\,x}+x^4\,\left ({\ln \relax (5)}^2-4\,\ln \relax (5)+4\right )-x^2\,{\mathrm {e}}^{x^3+x}\,\left (\ln \left (25\right )-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.17, size = 44, normalized size = 2.10 \begin {gather*} x^{4} \left (- 4 \log {\relax (5 )} + \log {\relax (5 )}^{2} + 4\right ) + \left (- 2 x^{2} \log {\relax (5 )} + 4 x^{2}\right ) e^{x^{3} + x} + e^{2 x^{3} + 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________