Optimal. Leaf size=26 \[ \frac {x \log \left (-x^3+\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}{4+x} \]
________________________________________________________________________________________
Rubi [F] time = 14.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 x-2 x^2+\left (16+12 x+2 x^2-48 x^3-36 x^4-6 x^5\right ) \log (2+x)+\left (8+6 x+x^2-24 x^3-18 x^4-3 x^5\right ) \log ^2(2+x)+\left (\left (-16 x^3-8 x^4\right ) \log (2+x)+\left (-8 x^3-4 x^4\right ) \log ^2(2+x)+\left ((16+8 x) \log (2+x)+(8+4 x) \log ^2(2+x)\right ) \log \left (\frac {2 x+x \log (2+x)}{\log (2+x)}\right )\right ) \log \left (-x^3+\log \left (\frac {2 x+x \log (2+x)}{\log (2+x)}\right )\right )}{\left (-64 x^3-64 x^4-20 x^5-2 x^6\right ) \log (2+x)+\left (-32 x^3-32 x^4-10 x^5-x^6\right ) \log ^2(2+x)+\left (\left (64+64 x+20 x^2+2 x^3\right ) \log (2+x)+\left (32+32 x+10 x^2+x^3\right ) \log ^2(2+x)\right ) \log \left (\frac {2 x+x \log (2+x)}{\log (2+x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x (4+x)+2 (2+x) \log (2+x) \left (-4-x+12 x^3+3 x^4+4 \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right ) \log \left (-x^3+\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )\right )+(2+x) \log ^2(2+x) \left (-4-x+12 x^3+3 x^4+4 \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right ) \log \left (-x^3+\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )\right )}{(2+x) (4+x)^2 \log (2+x) (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )} \, dx\\ &=\int \left (-\frac {8}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}-\frac {2 x}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}+\frac {24 x^3}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}+\frac {6 x^4}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}+\frac {2 x}{(2+x) (4+x) \log (2+x) (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}-\frac {4 \log (2+x)}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}-\frac {x \log (2+x)}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}+\frac {12 x^3 \log (2+x)}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}+\frac {3 x^4 \log (2+x)}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}+\frac {4 \log \left (-x^3+\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}{(4+x)^2}\right ) \, dx\\ &=-\left (2 \int \frac {x}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )} \, dx\right )+2 \int \frac {x}{(2+x) (4+x) \log (2+x) (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )} \, dx+3 \int \frac {x^4 \log (2+x)}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )} \, dx-4 \int \frac {\log (2+x)}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )} \, dx+4 \int \frac {\log \left (-x^3+\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}{(4+x)^2} \, dx+6 \int \frac {x^4}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )} \, dx-8 \int \frac {1}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )} \, dx+12 \int \frac {x^3 \log (2+x)}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )} \, dx+24 \int \frac {x^3}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )} \, dx-\int \frac {x \log (2+x)}{(4+x)^2 (2+\log (2+x)) \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 46, normalized size = 1.77 \begin {gather*} \log \left (x^3-\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )-\frac {4 \log \left (-x^3+\log \left (x+\frac {2 x}{\log (2+x)}\right )\right )}{4+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.06, size = 32, normalized size = 1.23 \begin {gather*} \frac {x \log \left (-x^{3} + \log \left (\frac {x \log \left (x + 2\right ) + 2 \, x}{\log \left (x + 2\right )}\right )\right )}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.42, size = 56, normalized size = 2.15 \begin {gather*} -\frac {4 \, \log \left (-x^{3} + \log \left (x \log \left (x + 2\right ) + 2 \, x\right ) - \log \left (\log \left (x + 2\right )\right )\right )}{x + 4} + \log \left (x^{3} - \log \left (x \log \left (x + 2\right ) + 2 \, x\right ) + \log \left (\log \left (x + 2\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.31, size = 470, normalized size = 18.08
method | result | size |
risch | \(-\frac {4 \ln \left (\ln \relax (x )-\ln \left (\ln \left (2+x \right )\right )+\ln \left (\ln \left (2+x \right )+2\right )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )+\mathrm {csgn}\left (\frac {i}{\ln \left (2+x \right )}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )+\mathrm {csgn}\left (i \left (\ln \left (2+x \right )+2\right )\right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i x \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right ) \left (-\mathrm {csgn}\left (\frac {i x \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (\frac {i x \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )+\mathrm {csgn}\left (\frac {i \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )\right )}{2}-x^{3}\right )}{4+x}+\ln \left (\ln \left (\ln \left (2+x \right )+2\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right ) \mathrm {csgn}\left (\frac {i x \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (\ln \left (2+x \right )+2\right )\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (2+x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )-\pi \,\mathrm {csgn}\left (i \left (\ln \left (2+x \right )+2\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (2+x \right )}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )^{3}-\pi \,\mathrm {csgn}\left (\frac {i \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right ) \mathrm {csgn}\left (\frac {i x \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i x \left (\ln \left (2+x \right )+2\right )}{\ln \left (2+x \right )}\right )^{3}-2 i x^{3}+2 i \ln \relax (x )-2 i \ln \left (\ln \left (2+x \right )\right )\right )}{2}\right )\) | \(470\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 30, normalized size = 1.15 \begin {gather*} \frac {x \log \left (-x^{3} + \log \relax (x) + \log \left (\log \left (x + 2\right ) + 2\right ) - \log \left (\log \left (x + 2\right )\right )\right )}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.98, size = 32, normalized size = 1.23 \begin {gather*} \frac {x\,\ln \left (\ln \left (\frac {2\,x+x\,\ln \left (x+2\right )}{\ln \left (x+2\right )}\right )-x^3\right )}{x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 44.28, size = 48, normalized size = 1.85 \begin {gather*} \log {\left (- x^{3} + \log {\left (\frac {x \log {\left (x + 2 \right )} + 2 x}{\log {\left (x + 2 \right )}} \right )} \right )} - \frac {4 \log {\left (- x^{3} + \log {\left (\frac {x \log {\left (x + 2 \right )} + 2 x}{\log {\left (x + 2 \right )}} \right )} \right )}}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________