Optimal. Leaf size=24 \[ 2-\frac {x \left (4+x+\frac {65536}{(-x+\log (\log (x)))^2}\right )}{\sqrt [3]{e}} \]
________________________________________________________________________________________
Rubi [F] time = 0.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {131072+\left (-65536 x+4 x^3+2 x^4\right ) \log (x)+\left (-65536-12 x^2-6 x^3\right ) \log (x) \log (\log (x))+\left (12 x+6 x^2\right ) \log (x) \log ^2(\log (x))+(-4-2 x) \log (x) \log ^3(\log (x))}{-\sqrt [3]{e} x^3 \log (x)+3 \sqrt [3]{e} x^2 \log (x) \log (\log (x))-3 \sqrt [3]{e} x \log (x) \log ^2(\log (x))+\sqrt [3]{e} \log (x) \log ^3(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-65536-\log (x) \left (x \left (-32768+2 x^2+x^3\right )-\left (32768+6 x^2+3 x^3\right ) \log (\log (x))+3 x (2+x) \log ^2(\log (x))-(2+x) \log ^3(\log (x))\right )\right )}{\sqrt [3]{e} \log (x) (x-\log (\log (x)))^3} \, dx\\ &=\frac {2 \int \frac {-65536-\log (x) \left (x \left (-32768+2 x^2+x^3\right )-\left (32768+6 x^2+3 x^3\right ) \log (\log (x))+3 x (2+x) \log ^2(\log (x))-(2+x) \log ^3(\log (x))\right )}{\log (x) (x-\log (\log (x)))^3} \, dx}{\sqrt [3]{e}}\\ &=\frac {2 \int \left (-2-x+\frac {65536 (-1+x \log (x))}{\log (x) (x-\log (\log (x)))^3}-\frac {32768}{(x-\log (\log (x)))^2}\right ) \, dx}{\sqrt [3]{e}}\\ &=-\frac {4 x}{\sqrt [3]{e}}-\frac {x^2}{\sqrt [3]{e}}-\frac {65536 \int \frac {1}{(x-\log (\log (x)))^2} \, dx}{\sqrt [3]{e}}+\frac {131072 \int \frac {-1+x \log (x)}{\log (x) (x-\log (\log (x)))^3} \, dx}{\sqrt [3]{e}}\\ &=-\frac {4 x}{\sqrt [3]{e}}-\frac {x^2}{\sqrt [3]{e}}-\frac {65536 \int \frac {1}{(x-\log (\log (x)))^2} \, dx}{\sqrt [3]{e}}+\frac {131072 \int \left (\frac {x}{(x-\log (\log (x)))^3}-\frac {1}{\log (x) (x-\log (\log (x)))^3}\right ) \, dx}{\sqrt [3]{e}}\\ &=-\frac {4 x}{\sqrt [3]{e}}-\frac {x^2}{\sqrt [3]{e}}-\frac {65536 \int \frac {1}{(x-\log (\log (x)))^2} \, dx}{\sqrt [3]{e}}+\frac {131072 \int \frac {x}{(x-\log (\log (x)))^3} \, dx}{\sqrt [3]{e}}-\frac {131072 \int \frac {1}{\log (x) (x-\log (\log (x)))^3} \, dx}{\sqrt [3]{e}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 22, normalized size = 0.92 \begin {gather*} -\frac {x \left (4+x+\frac {65536}{(x-\log (\log (x)))^2}\right )}{\sqrt [3]{e}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.96, size = 66, normalized size = 2.75 \begin {gather*} -\frac {x^{4} + 4 \, x^{3} + {\left (x^{2} + 4 \, x\right )} \log \left (\log \relax (x)\right )^{2} - 2 \, {\left (x^{3} + 4 \, x^{2}\right )} \log \left (\log \relax (x)\right ) + 65536 \, x}{x^{2} e^{\frac {1}{3}} - 2 \, x e^{\frac {1}{3}} \log \left (\log \relax (x)\right ) + e^{\frac {1}{3}} \log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 79, normalized size = 3.29 \begin {gather*} -\frac {x^{4} e^{\left (-\frac {1}{3}\right )} - 2 \, x^{3} e^{\left (-\frac {1}{3}\right )} \log \left (\log \relax (x)\right ) + x^{2} e^{\left (-\frac {1}{3}\right )} \log \left (\log \relax (x)\right )^{2} + 4 \, x^{3} e^{\left (-\frac {1}{3}\right )} - 8 \, x^{2} e^{\left (-\frac {1}{3}\right )} \log \left (\log \relax (x)\right ) + 4 \, x e^{\left (-\frac {1}{3}\right )} \log \left (\log \relax (x)\right )^{2} + 65536 \, x e^{\left (-\frac {1}{3}\right )}}{x^{2} - 2 \, x \log \left (\log \relax (x)\right ) + \log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 1.00
method | result | size |
risch | \(-\left (4+x \right ) x \,{\mathrm e}^{-\frac {1}{3}}-\frac {65536 x \,{\mathrm e}^{-\frac {1}{3}}}{\left (x -\ln \left (\ln \relax (x )\right )\right )^{2}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 66, normalized size = 2.75 \begin {gather*} -\frac {x^{4} + 4 \, x^{3} + {\left (x^{2} + 4 \, x\right )} \log \left (\log \relax (x)\right )^{2} - 2 \, {\left (x^{3} + 4 \, x^{2}\right )} \log \left (\log \relax (x)\right ) + 65536 \, x}{x^{2} e^{\frac {1}{3}} - 2 \, x e^{\frac {1}{3}} \log \left (\log \relax (x)\right ) + e^{\frac {1}{3}} \log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.80, size = 236, normalized size = 9.83 \begin {gather*} \frac {32768\,{\mathrm {e}}^{-\frac {1}{3}}}{x\,\left (x\,\ln \relax (x)-1\right )}-\frac {\frac {32768\,x\,{\mathrm {e}}^{-\frac {1}{3}}\,\ln \relax (x)\,\left (x^2\,{\ln \relax (x)}^2-x\,\ln \relax (x)+x+1\right )}{{\left (x\,\ln \relax (x)-1\right )}^3}-\frac {32768\,x\,\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^{-\frac {1}{3}}\,\ln \relax (x)\,\left (\ln \relax (x)+1\right )}{{\left (x\,\ln \relax (x)-1\right )}^3}}{x-\ln \left (\ln \relax (x)\right )}-x^2\,{\mathrm {e}}^{-\frac {1}{3}}-\frac {\frac {32768\,x\,{\mathrm {e}}^{-\frac {1}{3}}\,\left (x\,\ln \relax (x)-2\right )}{x\,\ln \relax (x)-1}+\frac {32768\,x\,\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^{-\frac {1}{3}}\,\ln \relax (x)}{x\,\ln \relax (x)-1}}{x^2-2\,x\,\ln \left (\ln \relax (x)\right )+{\ln \left (\ln \relax (x)\right )}^2}-4\,x\,{\mathrm {e}}^{-\frac {1}{3}}-\frac {32768\,{\mathrm {e}}^{-\frac {1}{3}}\,\left (x^3+2\,x^2+x\right )}{x^2\,\left (x+1\right )\,\left (-x^3\,{\ln \relax (x)}^3+3\,x^2\,{\ln \relax (x)}^2-3\,x\,\ln \relax (x)+1\right )}+\frac {32768\,{\mathrm {e}}^{-\frac {1}{3}}\,\left (x^2+3\,x+2\right )}{x\,\left (x+1\right )\,\left (x^2\,{\ln \relax (x)}^2-2\,x\,\ln \relax (x)+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 54, normalized size = 2.25 \begin {gather*} - \frac {x^{2}}{e^{\frac {1}{3}}} - \frac {4 x}{e^{\frac {1}{3}}} - \frac {65536 x}{x^{2} e^{\frac {1}{3}} - 2 x e^{\frac {1}{3}} \log {\left (\log {\relax (x )} \right )} + e^{\frac {1}{3}} \log {\left (\log {\relax (x )} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________