Optimal. Leaf size=20 \[ \frac {3}{10 x \log \left (\frac {e^x}{27 x^2}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {12, 6687} \begin {gather*} \frac {3}{10 x \log \left (\frac {e^x}{27 x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6687
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{10} \int \frac {6-3 x-3 \log \left (\frac {e^x}{27 x^2}\right )}{x^2 \log ^2\left (\frac {e^x}{27 x^2}\right )} \, dx\\ &=\frac {3}{10 x \log \left (\frac {e^x}{27 x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.96, size = 20, normalized size = 1.00 \begin {gather*} \frac {3}{10 x \log \left (\frac {e^x}{27 x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 15, normalized size = 0.75 \begin {gather*} \frac {3}{10 \, x \log \left (\frac {e^{x}}{27 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 17, normalized size = 0.85 \begin {gather*} \frac {3}{10 \, {\left (x^{2} - x \log \left (27 \, x^{2}\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 16, normalized size = 0.80
method | result | size |
default | \(\frac {3}{10 x \ln \left (\frac {{\mathrm e}^{x}}{27 x^{2}}\right )}\) | \(16\) |
norman | \(\frac {3}{10 x \ln \left (\frac {{\mathrm e}^{x}}{27 x^{2}}\right )}\) | \(16\) |
risch | \(-\frac {3 i}{5 x \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x^{2}}\right )+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x^{2}}\right )^{2}+\pi \,\mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x^{2}}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{x^{2}}\right )^{3}+6 i \ln \relax (3)+4 i \ln \relax (x )-2 i \ln \left ({\mathrm e}^{x}\right )\right )}\) | \(148\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 18, normalized size = 0.90 \begin {gather*} \frac {3}{10 \, {\left (x^{2} - 3 \, x \log \relax (3) - 2 \, x \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.25, size = 15, normalized size = 0.75 \begin {gather*} \frac {3}{10\,x\,\left (x+\ln \left (\frac {1}{27\,x^2}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 14, normalized size = 0.70 \begin {gather*} \frac {3}{10 x \log {\left (\frac {e^{x}}{27 x^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________