Optimal. Leaf size=27 \[ \left (3+\frac {e^{\frac {4-\log (\log (4))}{3+\frac {4 x}{3}}}}{x}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 7.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2 (12-3 \log (\log (4)))}{9+4 x}} \left (-162-240 x-32 x^2+24 x \log (\log (4))\right )+e^{\frac {12-3 \log (\log (4))}{9+4 x}} \left (-486 x-720 x^2-96 x^3+72 x^2 \log (\log (4))\right )}{81 x^3+72 x^4+16 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {2 (12-3 \log (\log (4)))}{9+4 x}} \left (-162-240 x-32 x^2+24 x \log (\log (4))\right )+e^{\frac {12-3 \log (\log (4))}{9+4 x}} \left (-486 x-720 x^2-96 x^3+72 x^2 \log (\log (4))\right )}{x^3 \left (81+72 x+16 x^2\right )} \, dx\\ &=\int \frac {e^{\frac {2 (12-3 \log (\log (4)))}{9+4 x}} \left (-162-240 x-32 x^2+24 x \log (\log (4))\right )+e^{\frac {12-3 \log (\log (4))}{9+4 x}} \left (-486 x-720 x^2-96 x^3+72 x^2 \log (\log (4))\right )}{x^3 (9+4 x)^2} \, dx\\ &=\int \frac {2 e^{\frac {12}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4) \left (e^{\frac {12}{9+4 x}}+3 x \log ^{\frac {3}{9+4 x}}(4)\right ) \left (-81-16 x^2-12 x (10-\log (\log (4)))\right )}{x^3 (9+4 x)^2} \, dx\\ &=2 \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4) \left (e^{\frac {12}{9+4 x}}+3 x \log ^{\frac {3}{9+4 x}}(4)\right ) \left (-81-16 x^2-12 x (10-\log (\log (4)))\right )}{x^3 (9+4 x)^2} \, dx\\ &=2 \int \left (\frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4) \left (-81-16 x^2-12 x (10-\log (\log (4)))\right )}{x^3 (9+4 x)^2}+\frac {3 e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4) \left (-81-16 x^2-12 x (10-\log (\log (4)))\right )}{x^2 (9+4 x)^2}\right ) \, dx\\ &=2 \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4) \left (-81-16 x^2-12 x (10-\log (\log (4)))\right )}{x^3 (9+4 x)^2} \, dx+6 \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4) \left (-81-16 x^2-12 x (10-\log (\log (4)))\right )}{x^2 (9+4 x)^2} \, dx\\ &=2 \int \left (-\frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x^3}+\frac {4 e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4) (-4+\log (\log (4)))}{27 x^2}-\frac {32 e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4) (-4+\log (\log (4)))}{243 x}+\frac {64 e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4) (-4+\log (\log (4)))}{27 (9+4 x)^2}+\frac {128 e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4) (-4+\log (\log (4)))}{243 (9+4 x)}\right ) \, dx+6 \int \left (-\frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{x^2}+\frac {4 e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4) (-4+\log (\log (4)))}{27 x}-\frac {16 e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4) (-4+\log (\log (4)))}{3 (9+4 x)^2}-\frac {16 e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4) (-4+\log (\log (4)))}{27 (9+4 x)}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x^3} \, dx\right )-6 \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{x^2} \, dx+\frac {1}{243} (64 (4-\log (\log (4)))) \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x} \, dx-\frac {1}{27} (8 (4-\log (\log (4)))) \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x^2} \, dx-\frac {1}{9} (8 (4-\log (\log (4)))) \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{x} \, dx-\frac {1}{243} (256 (4-\log (\log (4)))) \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{9+4 x} \, dx+\frac {1}{9} (32 (4-\log (\log (4)))) \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{9+4 x} \, dx-\frac {1}{27} (128 (4-\log (\log (4)))) \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{(9+4 x)^2} \, dx+(32 (4-\log (\log (4)))) \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{(9+4 x)^2} \, dx\\ &=-\left (2 \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x^3} \, dx\right )-6 \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{x^2} \, dx+\frac {1}{243} (64 (4-\log (\log (4)))) \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x} \, dx-\frac {1}{243} (64 (4-\log (\log (4)))) \operatorname {Subst}\left (\int \frac {e^{24/x} \log ^{-\frac {6}{x}}(4)}{x} \, dx,x,9+4 x\right )-\frac {1}{27} (8 (4-\log (\log (4)))) \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x^2} \, dx-\frac {1}{9} (8 (4-\log (\log (4)))) \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{x} \, dx+\frac {1}{9} (8 (4-\log (\log (4)))) \operatorname {Subst}\left (\int \frac {e^{12/x} \log ^{-\frac {3}{x}}(4)}{x} \, dx,x,9+4 x\right )-\frac {1}{27} (32 (4-\log (\log (4)))) \operatorname {Subst}\left (\int \frac {e^{24/x} \log ^{-\frac {6}{x}}(4)}{x^2} \, dx,x,9+4 x\right )+(8 (4-\log (\log (4)))) \operatorname {Subst}\left (\int \frac {e^{12/x} \log ^{-\frac {3}{x}}(4)}{x^2} \, dx,x,9+4 x\right )\\ &=-\left (2 \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x^3} \, dx\right )-6 \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{x^2} \, dx+\frac {1}{243} (64 (4-\log (\log (4)))) \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x} \, dx-\frac {1}{243} (64 (4-\log (\log (4)))) \operatorname {Subst}\left (\int \frac {e^{\frac {24-6 \log (\log (4))}{x}}}{x} \, dx,x,9+4 x\right )-\frac {1}{27} (8 (4-\log (\log (4)))) \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x^2} \, dx-\frac {1}{9} (8 (4-\log (\log (4)))) \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{x} \, dx+\frac {1}{9} (8 (4-\log (\log (4)))) \operatorname {Subst}\left (\int \frac {e^{\frac {12-3 \log (\log (4))}{x}}}{x} \, dx,x,9+4 x\right )-\frac {1}{27} (32 (4-\log (\log (4)))) \operatorname {Subst}\left (\int \frac {e^{\frac {24-6 \log (\log (4))}{x}}}{x^2} \, dx,x,9+4 x\right )+(8 (4-\log (\log (4)))) \operatorname {Subst}\left (\int \frac {e^{\frac {12-3 \log (\log (4))}{x}}}{x^2} \, dx,x,9+4 x\right )\\ &=\frac {16}{81} e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)-\frac {8}{3} e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)-\frac {8}{9} \text {Ei}\left (\frac {3 (4-\log (\log (4)))}{9+4 x}\right ) (4-\log (\log (4)))+\frac {64}{243} \text {Ei}\left (\frac {6 (4-\log (\log (4)))}{9+4 x}\right ) (4-\log (\log (4)))-2 \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x^3} \, dx-6 \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{x^2} \, dx+\frac {1}{243} (64 (4-\log (\log (4)))) \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x} \, dx-\frac {1}{27} (8 (4-\log (\log (4)))) \int \frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{x^2} \, dx-\frac {1}{9} (8 (4-\log (\log (4)))) \int \frac {e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 1.74, size = 61, normalized size = 2.26 \begin {gather*} -2 \left (-\frac {e^{\frac {24}{9+4 x}} \log ^{-\frac {6}{9+4 x}}(4)}{2 x^2}-\frac {3 e^{\frac {12}{9+4 x}} \log ^{-\frac {3}{9+4 x}}(4)}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 42, normalized size = 1.56 \begin {gather*} \frac {6 \, x e^{\left (-\frac {3 \, {\left (\log \left (2 \, \log \relax (2)\right ) - 4\right )}}{4 \, x + 9}\right )} + e^{\left (-\frac {6 \, {\left (\log \left (2 \, \log \relax (2)\right ) - 4\right )}}{4 \, x + 9}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 4.40, size = 74, normalized size = 2.74 \begin {gather*} \frac {6 \, x e^{\left (\frac {4 \, {\left (x \log \relax (2) + x \log \left (\log \relax (2)\right ) - 4 \, x\right )}}{3 \, {\left (4 \, x + 9\right )}} - \frac {1}{3} \, \log \relax (2) + \frac {4}{3}\right )} \log \relax (2)^{\frac {1}{3}} + e^{\left (\frac {8 \, {\left (x \log \relax (2) + x \log \left (\log \relax (2)\right ) - 4 \, x\right )}}{3 \, {\left (4 \, x + 9\right )}} - \frac {2}{3} \, \log \relax (2) + \frac {8}{3}\right )}}{x^{2} \log \relax (2)^{\frac {2}{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 45, normalized size = 1.67
method | result | size |
risch | \(\frac {{\mathrm e}^{-\frac {6 \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )-4\right )}{4 x +9}}}{x^{2}}+\frac {6 \,{\mathrm e}^{-\frac {3 \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )-4\right )}{4 x +9}}}{x}\) | \(45\) |
norman | \(\frac {9 \,{\mathrm e}^{\frac {-6 \ln \left (2 \ln \relax (2)\right )+24}{4 x +9}}+54 x \,{\mathrm e}^{\frac {-3 \ln \left (2 \ln \relax (2)\right )+12}{4 x +9}}+4 x \,{\mathrm e}^{\frac {-6 \ln \left (2 \ln \relax (2)\right )+24}{4 x +9}}+24 x^{2} {\mathrm e}^{\frac {-3 \ln \left (2 \ln \relax (2)\right )+12}{4 x +9}}}{x^{2} \left (4 x +9\right )}\) | \(102\) |
derivativedivides | \(\text {Expression too large to display}\) | \(8703\) |
default | \(\text {Expression too large to display}\) | \(8703\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 78, normalized size = 2.89 \begin {gather*} \frac {6 \, x e^{\left (\frac {3 \, \log \relax (2)}{4 \, x + 9} - \frac {3 \, \log \left (\log \relax (2)\right )}{4 \, x + 9} + \frac {12}{4 \, x + 9}\right )} + e^{\left (-\frac {6 \, \log \left (\log \relax (2)\right )}{4 \, x + 9} + \frac {24}{4 \, x + 9}\right )}}{2^{\frac {6}{4 \, x + 9}} x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.73, size = 67, normalized size = 2.48 \begin {gather*} \frac {{\mathrm {e}}^{\frac {12}{4\,x+9}}\,\left ({\mathrm {e}}^{\frac {12}{4\,x+9}}+3\,2^{\frac {3}{4\,x+9}+1}\,x\,{\ln \relax (2)}^{\frac {3}{4\,x+9}}\right )\,{\left (\frac {1}{64\,{\ln \relax (2)}^6}\right )}^{\frac {1}{4\,x+9}}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.38, size = 42, normalized size = 1.56 \begin {gather*} \frac {6 x^{2} e^{\frac {12 - 3 \log {\left (2 \log {\relax (2 )} \right )}}{4 x + 9}} + x e^{\frac {2 \left (12 - 3 \log {\left (2 \log {\relax (2 )} \right )}\right )}{4 x + 9}}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________