Optimal. Leaf size=25 \[ \left (\frac {e^x}{2+e^x+x}\right )^{\frac {2 e^{-3+x^2}}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 11.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (\frac {e^x}{2+e^x+x}\right )^{\frac {2 e^{-3+x^2}}{x}} \left (e^{-3+x^2} \left (2 x+2 x^2\right )+e^{-3+x^2} \left (-4-2 x+8 x^2+4 x^3+e^x \left (-2+4 x^2\right )\right ) \log \left (\frac {e^x}{2+e^x+x}\right )\right )}{2 x^2+e^x x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \left (x (1+x)+\left (2+e^x+x\right ) \left (-1+2 x^2\right ) \log \left (\frac {e^x}{2+e^x+x}\right )\right )}{x^2} \, dx\\ &=2 \int \frac {e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \left (x (1+x)+\left (2+e^x+x\right ) \left (-1+2 x^2\right ) \log \left (\frac {e^x}{2+e^x+x}\right )\right )}{x^2} \, dx\\ &=2 \int \left (\frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \left (-1+2 x^2\right ) \log \left (\frac {e^x}{2+e^x+x}\right )}{x^2}+\frac {e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \left (x+x^2-2 \log \left (\frac {e^x}{2+e^x+x}\right )-x \log \left (\frac {e^x}{2+e^x+x}\right )+4 x^2 \log \left (\frac {e^x}{2+e^x+x}\right )+2 x^3 \log \left (\frac {e^x}{2+e^x+x}\right )\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \left (-1+2 x^2\right ) \log \left (\frac {e^x}{2+e^x+x}\right )}{x^2} \, dx+2 \int \frac {e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \left (x+x^2-2 \log \left (\frac {e^x}{2+e^x+x}\right )-x \log \left (\frac {e^x}{2+e^x+x}\right )+4 x^2 \log \left (\frac {e^x}{2+e^x+x}\right )+2 x^3 \log \left (\frac {e^x}{2+e^x+x}\right )\right )}{x^2} \, dx\\ &=2 \int \frac {e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \left (x (1+x)+\left (-2-x+4 x^2+2 x^3\right ) \log \left (\frac {e^x}{2+e^x+x}\right )\right )}{x^2} \, dx-2 \int \frac {(1+x) \left (2 \int e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx-\int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx\right )}{2+e^x+x} \, dx-\left (2 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx+\left (4 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx\\ &=2 \int \left (\frac {e^{-3-x+x^2} (1+x) \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x}+\frac {e^{-3-x+x^2} (2+x) \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \left (-1+2 x^2\right ) \log \left (\frac {e^x}{2+e^x+x}\right )}{x^2}\right ) \, dx-2 \int \left (\frac {2 \int e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx-\int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx}{2+e^x+x}+\frac {x \left (2 \int e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx-\int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx\right )}{2+e^x+x}\right ) \, dx-\left (2 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx+\left (4 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx\\ &=2 \int \frac {e^{-3-x+x^2} (1+x) \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x} \, dx+2 \int \frac {e^{-3-x+x^2} (2+x) \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \left (-1+2 x^2\right ) \log \left (\frac {e^x}{2+e^x+x}\right )}{x^2} \, dx-2 \int \frac {2 \int e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx-\int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx}{2+e^x+x} \, dx-2 \int \frac {x \left (2 \int e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx-\int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx\right )}{2+e^x+x} \, dx-\left (2 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx+\left (4 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx\\ &=2 \int \left (e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}+\frac {e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x}\right ) \, dx-2 \int \left (\frac {2 \int e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx}{2+e^x+x}-\frac {\int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx}{2+e^x+x}\right ) \, dx-2 \int \left (\frac {2 x \int e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx}{2+e^x+x}-\frac {x \int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx}{2+e^x+x}\right ) \, dx-2 \int \frac {(1+x) \left (4 \int e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx-2 \int \frac {e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx-\int \frac {e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x} \, dx+2 \int e^{-3-x+x^2} x \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx\right )}{2+e^x+x} \, dx-\left (2 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int \frac {e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx-\left (2 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int \frac {e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x} \, dx+\left (4 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int e^{-3+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx-\left (4 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int \frac {e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}}}{x^2} \, dx+\left (4 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int e^{-3-x+x^2} x \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx+\left (8 \log \left (\frac {e^x}{2+e^x+x}\right )\right ) \int e^{-3-x+x^2} \left (\frac {e^x}{2+e^x+x}\right )^{1+\frac {2 e^{-3+x^2}}{x}} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.01, size = 25, normalized size = 1.00 \begin {gather*} \left (\frac {e^x}{2+e^x+x}\right )^{\frac {2 e^{-3+x^2}}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 22, normalized size = 0.88 \begin {gather*} \left (\frac {e^{x}}{x + e^{x} + 2}\right )^{\frac {2 \, e^{\left (x^{2} - 3\right )}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left (2 \, x^{3} + 4 \, x^{2} + {\left (2 \, x^{2} - 1\right )} e^{x} - x - 2\right )} e^{\left (x^{2} - 3\right )} \log \left (\frac {e^{x}}{x + e^{x} + 2}\right ) + {\left (x^{2} + x\right )} e^{\left (x^{2} - 3\right )}\right )} \left (\frac {e^{x}}{x + e^{x} + 2}\right )^{\frac {2 \, e^{\left (x^{2} - 3\right )}}{x}}}{x^{3} + x^{2} e^{x} + 2 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.18, size = 135, normalized size = 5.40
method | result | size |
risch | \({\mathrm e}^{-\frac {{\mathrm e}^{x^{2}-3} \left (i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{{\mathrm e}^{x}+2+x}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{{\mathrm e}^{x}+2+x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{{\mathrm e}^{x}+2+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}+2+x}\right )+i \pi \,\mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{{\mathrm e}^{x}+2+x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}+2+x}\right )-2 \ln \left ({\mathrm e}^{x}\right )+2 \ln \left ({\mathrm e}^{x}+2+x \right )\right )}{x}}\) | \(135\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 27, normalized size = 1.08 \begin {gather*} e^{\left (-\frac {2 \, e^{\left (x^{2} - 3\right )} \log \left (x + e^{x} + 2\right )}{x} + 2 \, e^{\left (x^{2} - 3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.63, size = 29, normalized size = 1.16 \begin {gather*} {\mathrm {e}}^{2\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-3}}\,{\left (\frac {1}{x+{\mathrm {e}}^x+2}\right )}^{\frac {2\,{\mathrm {e}}^{x^2-3}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________