Optimal. Leaf size=19 \[ \frac {1}{5} x^3 \left (x-\frac {3}{\log \left (\frac {75}{x}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 23, normalized size of antiderivative = 1.21, number of steps used = 9, number of rules used = 6, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 6688, 14, 2306, 2310, 2178} \begin {gather*} \frac {x^4}{5}-\frac {3 x^3}{5 \log \left (\frac {75}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2178
Rule 2306
Rule 2310
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-3 x^2-9 x^2 \log \left (\frac {75}{x}\right )+4 x^3 \log ^2\left (\frac {75}{x}\right )}{\log ^2\left (\frac {75}{x}\right )} \, dx\\ &=\frac {1}{5} \int x^2 \left (4 x-\frac {3}{\log ^2\left (\frac {75}{x}\right )}-\frac {9}{\log \left (\frac {75}{x}\right )}\right ) \, dx\\ &=\frac {1}{5} \int \left (4 x^3-\frac {3 x^2}{\log ^2\left (\frac {75}{x}\right )}-\frac {9 x^2}{\log \left (\frac {75}{x}\right )}\right ) \, dx\\ &=\frac {x^4}{5}-\frac {3}{5} \int \frac {x^2}{\log ^2\left (\frac {75}{x}\right )} \, dx-\frac {9}{5} \int \frac {x^2}{\log \left (\frac {75}{x}\right )} \, dx\\ &=\frac {x^4}{5}-\frac {3 x^3}{5 \log \left (\frac {75}{x}\right )}+\frac {9}{5} \int \frac {x^2}{\log \left (\frac {75}{x}\right )} \, dx+759375 \operatorname {Subst}\left (\int \frac {e^{-3 x}}{x} \, dx,x,\log \left (\frac {75}{x}\right )\right )\\ &=\frac {x^4}{5}+759375 \text {Ei}\left (-3 \log \left (\frac {75}{x}\right )\right )-\frac {3 x^3}{5 \log \left (\frac {75}{x}\right )}-759375 \operatorname {Subst}\left (\int \frac {e^{-3 x}}{x} \, dx,x,\log \left (\frac {75}{x}\right )\right )\\ &=\frac {x^4}{5}-\frac {3 x^3}{5 \log \left (\frac {75}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 23, normalized size = 1.21 \begin {gather*} \frac {x^4}{5}-\frac {3 x^3}{5 \log \left (\frac {75}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 26, normalized size = 1.37 \begin {gather*} \frac {x^{4} \log \left (\frac {75}{x}\right ) - 3 \, x^{3}}{5 \, \log \left (\frac {75}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 19, normalized size = 1.00 \begin {gather*} \frac {1}{5} \, x^{4} - \frac {3 \, x^{3}}{5 \, \log \left (\frac {75}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 20, normalized size = 1.05
method | result | size |
derivativedivides | \(\frac {x^{4}}{5}-\frac {3 x^{3}}{5 \ln \left (\frac {75}{x}\right )}\) | \(20\) |
default | \(\frac {x^{4}}{5}-\frac {3 x^{3}}{5 \ln \left (\frac {75}{x}\right )}\) | \(20\) |
risch | \(\frac {x^{4}}{5}-\frac {3 x^{3}}{5 \ln \left (\frac {75}{x}\right )}\) | \(20\) |
norman | \(\frac {-\frac {3 x^{3}}{5}+\frac {x^{4} \ln \left (\frac {75}{x}\right )}{5}}{\ln \left (\frac {75}{x}\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 39, normalized size = 2.05 \begin {gather*} \frac {x^{4} {\left (2 \, \log \relax (5) + \log \relax (3)\right )} - x^{4} \log \relax (x) - 3 \, x^{3}}{5 \, {\left (2 \, \log \relax (5) + \log \relax (3) - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.28, size = 19, normalized size = 1.00 \begin {gather*} \frac {x^4}{5}-\frac {3\,x^3}{5\,\ln \left (\frac {75}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 15, normalized size = 0.79 \begin {gather*} \frac {x^{4}}{5} - \frac {3 x^{3}}{5 \log {\left (\frac {75}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________