Optimal. Leaf size=9 \[ \frac {e^{-4 x}}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 9, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {2197} \begin {gather*} \frac {e^{-4 x}}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{-4 x}}{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 9, normalized size = 1.00 \begin {gather*} \frac {e^{-4 x}}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 8, normalized size = 0.89 \begin {gather*} \frac {e^{\left (-4 \, x\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 8, normalized size = 0.89 \begin {gather*} \frac {e^{\left (-4 \, x\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 9, normalized size = 1.00
method | result | size |
risch | \(\frac {{\mathrm e}^{-4 x}}{x^{2}}\) | \(9\) |
gosper | \(\frac {{\mathrm e}^{-4 x}}{x^{2}}\) | \(11\) |
derivativedivides | \(\frac {{\mathrm e}^{-4 x}}{x^{2}}\) | \(11\) |
default | \(\frac {{\mathrm e}^{-4 x}}{x^{2}}\) | \(11\) |
norman | \(\frac {{\mathrm e}^{-4 x}}{x^{2}}\) | \(11\) |
meijerg | \(-\frac {2 \left (-8 x +2\right )}{x}+\frac {4 \,{\mathrm e}^{-4 x}}{x}+8-\frac {4}{x}-\frac {144 x^{2}-48 x +6}{6 x^{2}}+\frac {\left (-12 x +3\right ) {\mathrm e}^{-4 x}}{3 x^{2}}+\frac {1}{x^{2}}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 15, normalized size = 1.67 \begin {gather*} 16 \, \Gamma \left (-1, 4 \, x\right ) + 32 \, \Gamma \left (-2, 4 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 8, normalized size = 0.89 \begin {gather*} \frac {{\mathrm {e}}^{-4\,x}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 8, normalized size = 0.89 \begin {gather*} \frac {e^{- 4 x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________