Optimal. Leaf size=16 \[ 9+2 x+x \left (e^7+x\right ) \log (4 x) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 28, normalized size of antiderivative = 1.75, number of steps used = 3, number of rules used = 1, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {2313} \begin {gather*} \left (x^2+e^7 x\right ) \log (4 x)+\left (2+e^7\right ) x-e^7 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2313
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (2+e^7\right ) x+\frac {x^2}{2}+\int \left (e^7+2 x\right ) \log (4 x) \, dx\\ &=\left (2+e^7\right ) x+\frac {x^2}{2}+\left (e^7 x+x^2\right ) \log (4 x)-\int \left (e^7+x\right ) \, dx\\ &=-e^7 x+\left (2+e^7\right ) x+\left (e^7 x+x^2\right ) \log (4 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 21, normalized size = 1.31 \begin {gather*} 2 x+e^7 x \log (4 x)+x^2 \log (4 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 17, normalized size = 1.06 \begin {gather*} {\left (x^{2} + x e^{7}\right )} \log \left (4 \, x\right ) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 20, normalized size = 1.25 \begin {gather*} x^{2} \log \left (4 \, x\right ) + x e^{7} \log \left (4 \, x\right ) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 1.12
method | result | size |
risch | \(\left (x \,{\mathrm e}^{7}+x^{2}\right ) \ln \left (4 x \right )+2 x\) | \(18\) |
derivativedivides | \(2 x +{\mathrm e}^{7} \ln \left (4 x \right ) x +x^{2} \ln \left (4 x \right )\) | \(21\) |
default | \(2 x +{\mathrm e}^{7} \ln \left (4 x \right ) x +x^{2} \ln \left (4 x \right )\) | \(21\) |
norman | \(2 x +{\mathrm e}^{7} \ln \left (4 x \right ) x +x^{2} \ln \left (4 x \right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 17, normalized size = 1.06 \begin {gather*} {\left (x^{2} + x e^{7}\right )} \log \left (4 \, x\right ) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.29, size = 20, normalized size = 1.25 \begin {gather*} x\,\left (\ln \left (4\,x\right )\,{\mathrm {e}}^7+2\right )+x^2\,\ln \left (4\,x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.94 \begin {gather*} 2 x + \left (x^{2} + x e^{7}\right ) \log {\left (4 x \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________