Optimal. Leaf size=17 \[ \frac {1}{16} e^{e^{-6+x}}-\frac {x}{2} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {12, 2282, 2194} \begin {gather*} \frac {e^{e^{x-6}}}{16}-\frac {x}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-8 e^3+e^{-3+e^{-6+x}+x}\right ) \, dx}{16 e^3}\\ &=-\frac {x}{2}+\frac {\int e^{-3+e^{-6+x}+x} \, dx}{16 e^3}\\ &=-\frac {x}{2}+\frac {\operatorname {Subst}\left (\int e^{-3+\frac {x}{e^6}} \, dx,x,e^x\right )}{16 e^3}\\ &=\frac {1}{16} e^{e^{-6+x}}-\frac {x}{2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 15, normalized size = 0.88 \begin {gather*} \frac {1}{16} \left (e^{e^{-6+x}}-8 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 26, normalized size = 1.53 \begin {gather*} -\frac {1}{16} \, {\left (8 \, x e^{\left (x - 3\right )} - e^{\left (x + e^{\left (x - 6\right )} - 3\right )}\right )} e^{\left (-x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 19, normalized size = 1.12 \begin {gather*} -\frac {1}{16} \, {\left (8 \, x e^{3} - e^{\left (e^{\left (x - 6\right )} + 3\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 12, normalized size = 0.71
method | result | size |
risch | \(\frac {{\mathrm e}^{{\mathrm e}^{x -6}}}{16}-\frac {x}{2}\) | \(12\) |
norman | \(\frac {{\mathrm e}^{{\mathrm e}^{x -3} {\mathrm e}^{-3}}}{16}-\frac {x}{2}\) | \(17\) |
default | \(\frac {{\mathrm e}^{-3} \left ({\mathrm e}^{3} {\mathrm e}^{{\mathrm e}^{x -3} {\mathrm e}^{-3}}-8 x \,{\mathrm e}^{3}\right )}{16}\) | \(26\) |
derivativedivides | \(\frac {{\mathrm e}^{-3} \left ({\mathrm e}^{3} {\mathrm e}^{{\mathrm e}^{x -3} {\mathrm e}^{-3}}-8 \,{\mathrm e}^{3} \ln \left ({\mathrm e}^{x -3} {\mathrm e}^{-3}\right )\right )}{16}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 19, normalized size = 1.12 \begin {gather*} -\frac {1}{16} \, {\left (8 \, x e^{3} - e^{\left (e^{\left (x - 6\right )} + 3\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 12, normalized size = 0.71 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^{-6}\,{\mathrm {e}}^x}}{16}-\frac {x}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 14, normalized size = 0.82 \begin {gather*} - \frac {x}{2} + \frac {e^{\frac {e^{x - 3}}{e^{3}}}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________