Optimal. Leaf size=28 \[ \log (5)+\frac {3 \log (\log (x))}{x^2 \left (-3+x \left (-e^{e^5 x}+x\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 4.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9+3 e^{e^5 x} x-3 x^2+\left (-18+18 x^2+e^{e^5 x} \left (-12 x-6 e^5 x^2\right )\right ) \log (x) \log (\log (x))}{\left (27 x^3-27 x^5+e^{3 e^5 x} x^6+9 x^7-x^9+e^{2 e^5 x} \left (9 x^5-3 x^7\right )+e^{e^5 x} \left (27 x^4-18 x^6+3 x^8\right )\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (3+e^{e^5 x} x-x^2-2 \left (3+2 e^{e^5 x} x-3 x^2+e^{5+e^5 x} x^2\right ) \log (x) \log (\log (x))\right )}{x^3 \left (3+e^{e^5 x} x-x^2\right )^3 \log (x)} \, dx\\ &=3 \int \frac {3+e^{e^5 x} x-x^2-2 \left (3+2 e^{e^5 x} x-3 x^2+e^{5+e^5 x} x^2\right ) \log (x) \log (\log (x))}{x^3 \left (3+e^{e^5 x} x-x^2\right )^3 \log (x)} \, dx\\ &=3 \int \left (\frac {2 \left (-3-3 e^5 x-x^2+e^5 x^3\right ) \log (\log (x))}{x^3 \left (-3-e^{e^5 x} x+x^2\right )^3}-\frac {-1+4 \log (x) \log (\log (x))+2 e^5 x \log (x) \log (\log (x))}{x^3 \left (-3-e^{e^5 x} x+x^2\right )^2 \log (x)}\right ) \, dx\\ &=-\left (3 \int \frac {-1+4 \log (x) \log (\log (x))+2 e^5 x \log (x) \log (\log (x))}{x^3 \left (-3-e^{e^5 x} x+x^2\right )^2 \log (x)} \, dx\right )+6 \int \frac {\left (-3-3 e^5 x-x^2+e^5 x^3\right ) \log (\log (x))}{x^3 \left (-3-e^{e^5 x} x+x^2\right )^3} \, dx\\ &=-\left (3 \int \left (-\frac {1}{x^3 \left (-3-e^{e^5 x} x+x^2\right )^2 \log (x)}+\frac {4 \log (\log (x))}{x^3 \left (-3-e^{e^5 x} x+x^2\right )^2}+\frac {2 e^5 \log (\log (x))}{x^2 \left (-3-e^{e^5 x} x+x^2\right )^2}\right ) \, dx\right )+6 \int \left (-\frac {e^5 \log (\log (x))}{\left (3+e^{e^5 x} x-x^2\right )^3}-\frac {3 \log (\log (x))}{x^3 \left (-3-e^{e^5 x} x+x^2\right )^3}-\frac {3 e^5 \log (\log (x))}{x^2 \left (-3-e^{e^5 x} x+x^2\right )^3}-\frac {\log (\log (x))}{x \left (-3-e^{e^5 x} x+x^2\right )^3}\right ) \, dx\\ &=3 \int \frac {1}{x^3 \left (-3-e^{e^5 x} x+x^2\right )^2 \log (x)} \, dx-6 \int \frac {\log (\log (x))}{x \left (-3-e^{e^5 x} x+x^2\right )^3} \, dx-12 \int \frac {\log (\log (x))}{x^3 \left (-3-e^{e^5 x} x+x^2\right )^2} \, dx-18 \int \frac {\log (\log (x))}{x^3 \left (-3-e^{e^5 x} x+x^2\right )^3} \, dx-\left (6 e^5\right ) \int \frac {\log (\log (x))}{\left (3+e^{e^5 x} x-x^2\right )^3} \, dx-\left (6 e^5\right ) \int \frac {\log (\log (x))}{x^2 \left (-3-e^{e^5 x} x+x^2\right )^2} \, dx-\left (18 e^5\right ) \int \frac {\log (\log (x))}{x^2 \left (-3-e^{e^5 x} x+x^2\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.68, size = 25, normalized size = 0.89 \begin {gather*} \frac {3 \log (\log (x))}{x^2 \left (-3-e^{e^5 x} x+x^2\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 47, normalized size = 1.68 \begin {gather*} \frac {3 \, \log \left (\log \relax (x)\right )}{x^{6} + x^{4} e^{\left (2 \, x e^{5}\right )} - 6 \, x^{4} + 9 \, x^{2} - 2 \, {\left (x^{5} - 3 \, x^{3}\right )} e^{\left (x e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 51, normalized size = 1.82 \begin {gather*} \frac {3 \, \log \left (\log \relax (x)\right )}{x^{6} - 2 \, x^{5} e^{\left (x e^{5}\right )} + x^{4} e^{\left (2 \, x e^{5}\right )} - 6 \, x^{4} + 6 \, x^{3} e^{\left (x e^{5}\right )} + 9 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 0.86
method | result | size |
risch | \(\frac {3 \ln \left (\ln \relax (x )\right )}{x^{2} \left (x^{2}-x \,{\mathrm e}^{x \,{\mathrm e}^{5}}-3\right )^{2}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 47, normalized size = 1.68 \begin {gather*} \frac {3 \, \log \left (\log \relax (x)\right )}{x^{6} + x^{4} e^{\left (2 \, x e^{5}\right )} - 6 \, x^{4} + 9 \, x^{2} - 2 \, {\left (x^{5} - 3 \, x^{3}\right )} e^{\left (x e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.01, size = 45, normalized size = 1.61 \begin {gather*} \frac {3\,\ln \left (\ln \relax (x)\right )}{x^2\,\left ({\mathrm {e}}^{x\,{\mathrm {e}}^5}\,\left (6\,x-2\,x^3\right )-6\,x^2+x^4+x^2\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^5}+9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 48, normalized size = 1.71 \begin {gather*} \frac {3 \log {\left (\log {\relax (x )} \right )}}{x^{6} + x^{4} e^{2 x e^{5}} - 6 x^{4} + 9 x^{2} + \left (- 2 x^{5} + 6 x^{3}\right ) e^{x e^{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________