Optimal. Leaf size=31 \[ e^{e^{48 \log ^2(5)} \left (2+\frac {e^{-e^4}}{(1-x) x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 16.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-e^4+\frac {e^{-e^4+48 \log ^2(5)} \left (-1+e^{e^4} \left (-2 x+2 x^2\right )\right )}{-x+x^2}+48 \log ^2(5)\right ) (-1+2 x)}{x^2-2 x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-e^4+\frac {e^{-e^4+48 \log ^2(5)} \left (-1+e^{e^4} \left (-2 x+2 x^2\right )\right )}{-x+x^2}+48 \log ^2(5)\right ) (-1+2 x)}{x^2 \left (1-2 x+x^2\right )} \, dx\\ &=\int \frac {\exp \left (-e^4+\frac {e^{-e^4+48 \log ^2(5)} \left (-1+e^{e^4} \left (-2 x+2 x^2\right )\right )}{-x+x^2}+48 \log ^2(5)\right ) (-1+2 x)}{(-1+x)^2 x^2} \, dx\\ &=\int \frac {\exp \left (\frac {e^{-e^4+48 \log ^2(5)} \left (-1+e^{e^4} \left (-2 x+2 x^2\right )\right )}{-x+x^2}-e^4 \left (1-\frac {48 \log ^2(5)}{e^4}\right )\right ) (-1+2 x)}{(1-x)^2 x^2} \, dx\\ &=\int \left (\frac {\exp \left (\frac {e^{-e^4+48 \log ^2(5)} \left (-1+e^{e^4} \left (-2 x+2 x^2\right )\right )}{-x+x^2}-e^4 \left (1-\frac {48 \log ^2(5)}{e^4}\right )\right )}{(-1+x)^2}-\frac {\exp \left (\frac {e^{-e^4+48 \log ^2(5)} \left (-1+e^{e^4} \left (-2 x+2 x^2\right )\right )}{-x+x^2}-e^4 \left (1-\frac {48 \log ^2(5)}{e^4}\right )\right )}{x^2}\right ) \, dx\\ &=\int \frac {\exp \left (\frac {e^{-e^4+48 \log ^2(5)} \left (-1+e^{e^4} \left (-2 x+2 x^2\right )\right )}{-x+x^2}-e^4 \left (1-\frac {48 \log ^2(5)}{e^4}\right )\right )}{(-1+x)^2} \, dx-\int \frac {\exp \left (\frac {e^{-e^4+48 \log ^2(5)} \left (-1+e^{e^4} \left (-2 x+2 x^2\right )\right )}{-x+x^2}-e^4 \left (1-\frac {48 \log ^2(5)}{e^4}\right )\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.59, size = 30, normalized size = 0.97 \begin {gather*} e^{e^{48 \log ^2(5)} \left (2+\frac {e^{-e^4}}{x-x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 72, normalized size = 2.32 \begin {gather*} e^{\left (-48 \, \log \relax (5)^{2} + \frac {48 \, {\left (x^{2} - x\right )} \log \relax (5)^{2} - {\left (x^{2} - x\right )} e^{4} + {\left (2 \, {\left (x^{2} - x\right )} e^{\left (e^{4}\right )} - 1\right )} e^{\left (48 \, \log \relax (5)^{2} - e^{4}\right )}}{x^{2} - x} + e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 136, normalized size = 4.39 \begin {gather*} e^{\left (\frac {48 \, x^{2} \log \relax (5)^{2}}{x^{2} - x} - \frac {x^{2} e^{4}}{x^{2} - x} + \frac {2 \, x^{2} e^{\left (48 \, \log \relax (5)^{2}\right )}}{x^{2} - x} - \frac {48 \, x \log \relax (5)^{2}}{x^{2} - x} - 48 \, \log \relax (5)^{2} + \frac {x e^{4}}{x^{2} - x} - \frac {2 \, x e^{\left (48 \, \log \relax (5)^{2}\right )}}{x^{2} - x} - \frac {e^{\left (48 \, \log \relax (5)^{2} - e^{4}\right )}}{x^{2} - x} + e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 39, normalized size = 1.26
method | result | size |
gosper | \({\mathrm e}^{\frac {\left (2 x^{2} {\mathrm e}^{{\mathrm e}^{4}}-2 x \,{\mathrm e}^{{\mathrm e}^{4}}-1\right ) {\mathrm e}^{48 \ln \relax (5)^{2}} {\mathrm e}^{-{\mathrm e}^{4}}}{x \left (x -1\right )}}\) | \(39\) |
risch | \({\mathrm e}^{\frac {\left (2 x^{2} {\mathrm e}^{{\mathrm e}^{4}}-2 x \,{\mathrm e}^{{\mathrm e}^{4}}-1\right ) {\mathrm e}^{48 \ln \relax (5)^{2}-{\mathrm e}^{4}}}{x \left (x -1\right )}}\) | \(39\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {\left (\left (2 x^{2}-2 x \right ) {\mathrm e}^{{\mathrm e}^{4}}-1\right ) {\mathrm e}^{48 \ln \relax (5)^{2}} {\mathrm e}^{-{\mathrm e}^{4}}}{x^{2}-x}}-x \,{\mathrm e}^{\frac {\left (\left (2 x^{2}-2 x \right ) {\mathrm e}^{{\mathrm e}^{4}}-1\right ) {\mathrm e}^{48 \ln \relax (5)^{2}} {\mathrm e}^{-{\mathrm e}^{4}}}{x^{2}-x}}}{x \left (x -1\right )}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.75, size = 49, normalized size = 1.58 \begin {gather*} e^{\left (-\frac {e^{\left (48 \, \log \relax (5)^{2}\right )}}{x e^{\left (e^{4}\right )} - e^{\left (e^{4}\right )}} + \frac {e^{\left (48 \, \log \relax (5)^{2} - e^{4}\right )}}{x} + 2 \, e^{\left (48 \, \log \relax (5)^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.21, size = 66, normalized size = 2.13 \begin {gather*} {\mathrm {e}}^{\frac {2\,x\,{\mathrm {e}}^{48\,{\ln \relax (5)}^2}}{x-x^2}}\,{\mathrm {e}}^{-\frac {2\,x^2\,{\mathrm {e}}^{48\,{\ln \relax (5)}^2}}{x-x^2}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{-{\mathrm {e}}^4}\,{\mathrm {e}}^{48\,{\ln \relax (5)}^2}}{x-x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 34, normalized size = 1.10 \begin {gather*} e^{\frac {\left (\left (2 x^{2} - 2 x\right ) e^{e^{4}} - 1\right ) e^{48 \log {\relax (5 )}^{2}}}{\left (x^{2} - x\right ) e^{e^{4}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________