Optimal. Leaf size=32 \[ x^2 \left (-e+4 e^{2 x} x^2 \left (1+e^x-x^2\right )^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 4.56, antiderivative size = 230, normalized size of antiderivative = 7.19, number of steps used = 363, number of rules used = 4, integrand size = 273, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {2196, 2176, 2194, 1593} \begin {gather*} 16 e^{4 x} x^{14}-64 e^{4 x} x^{12}-64 e^{5 x} x^{12}+96 e^{4 x} x^{10}+192 e^{5 x} x^{10}+96 e^{6 x} x^{10}-64 e^{4 x} x^8-192 e^{5 x} x^8-192 e^{6 x} x^8-64 e^{7 x} x^8-8 e^{2 x+1} x^8+16 e^{4 x} x^6+64 e^{5 x} x^6+96 e^{6 x} x^6+64 e^{7 x} x^6+16 e^{8 x} x^6+16 e^{2 x+1} x^6+16 e^{3 x+1} x^6-8 e^{2 x+1} x^4-16 e^{3 x+1} x^4-8 e^{4 x+1} x^4+e^2 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^2 x^2+\int e^{1+3 x} \left (-64 x^3-48 x^4+96 x^5+48 x^6\right ) \, dx+\int e^{8 x} \left (96 x^5+128 x^6\right ) \, dx+\int e^{7 x} \left (384 x^5+448 x^6-512 x^7-448 x^8\right ) \, dx+\int e^{1+2 x} \left (-32 x^3-16 x^4+96 x^5+32 x^6-64 x^7-16 x^8\right ) \, dx+\int e^{6 x} \left (576 x^5+576 x^6-1536 x^7-1152 x^8+960 x^9+576 x^{10}\right ) \, dx+\int e^{5 x} \left (384 x^5+320 x^6-1536 x^7-960 x^8+1920 x^9+960 x^{10}-768 x^{11}-320 x^{12}\right ) \, dx+\int e^{4 x} \left (96 x^5+64 x^6-512 x^7-256 x^8+960 x^9+384 x^{10}-768 x^{11}-256 x^{12}+224 x^{13}+64 x^{14}+e \left (-32 x^3-32 x^4\right )\right ) \, dx\\ &=e^2 x^2+\int e^{8 x} x^5 (96+128 x) \, dx+\int \left (-64 e^{1+3 x} x^3-48 e^{1+3 x} x^4+96 e^{1+3 x} x^5+48 e^{1+3 x} x^6\right ) \, dx+\int \left (384 e^{7 x} x^5+448 e^{7 x} x^6-512 e^{7 x} x^7-448 e^{7 x} x^8\right ) \, dx+\int \left (-32 e^{1+2 x} x^3-16 e^{1+2 x} x^4+96 e^{1+2 x} x^5+32 e^{1+2 x} x^6-64 e^{1+2 x} x^7-16 e^{1+2 x} x^8\right ) \, dx+\int \left (576 e^{6 x} x^5+576 e^{6 x} x^6-1536 e^{6 x} x^7-1152 e^{6 x} x^8+960 e^{6 x} x^9+576 e^{6 x} x^{10}\right ) \, dx+\int \left (384 e^{5 x} x^5+320 e^{5 x} x^6-1536 e^{5 x} x^7-960 e^{5 x} x^8+1920 e^{5 x} x^9+960 e^{5 x} x^{10}-768 e^{5 x} x^{11}-320 e^{5 x} x^{12}\right ) \, dx+\int \left (96 e^{4 x} x^5+64 e^{4 x} x^6-512 e^{4 x} x^7-256 e^{4 x} x^8+960 e^{4 x} x^9+384 e^{4 x} x^{10}-768 e^{4 x} x^{11}-256 e^{4 x} x^{12}+224 e^{4 x} x^{13}+64 e^{4 x} x^{14}-32 e^{1+4 x} x^3 (1+x)\right ) \, dx\\ &=e^2 x^2-16 \int e^{1+2 x} x^4 \, dx-16 \int e^{1+2 x} x^8 \, dx-32 \int e^{1+2 x} x^3 \, dx+32 \int e^{1+2 x} x^6 \, dx-32 \int e^{1+4 x} x^3 (1+x) \, dx-48 \int e^{1+3 x} x^4 \, dx+48 \int e^{1+3 x} x^6 \, dx-64 \int e^{1+3 x} x^3 \, dx+64 \int e^{4 x} x^6 \, dx-64 \int e^{1+2 x} x^7 \, dx+64 \int e^{4 x} x^{14} \, dx+96 \int e^{4 x} x^5 \, dx+96 \int e^{1+2 x} x^5 \, dx+96 \int e^{1+3 x} x^5 \, dx+224 \int e^{4 x} x^{13} \, dx-256 \int e^{4 x} x^8 \, dx-256 \int e^{4 x} x^{12} \, dx+320 \int e^{5 x} x^6 \, dx-320 \int e^{5 x} x^{12} \, dx+384 \int e^{5 x} x^5 \, dx+384 \int e^{7 x} x^5 \, dx+384 \int e^{4 x} x^{10} \, dx+448 \int e^{7 x} x^6 \, dx-448 \int e^{7 x} x^8 \, dx-512 \int e^{4 x} x^7 \, dx-512 \int e^{7 x} x^7 \, dx+576 \int e^{6 x} x^5 \, dx+576 \int e^{6 x} x^6 \, dx+576 \int e^{6 x} x^{10} \, dx-768 \int e^{4 x} x^{11} \, dx-768 \int e^{5 x} x^{11} \, dx-960 \int e^{5 x} x^8 \, dx+960 \int e^{4 x} x^9 \, dx+960 \int e^{6 x} x^9 \, dx+960 \int e^{5 x} x^{10} \, dx-1152 \int e^{6 x} x^8 \, dx-1536 \int e^{5 x} x^7 \, dx-1536 \int e^{6 x} x^7 \, dx+1920 \int e^{5 x} x^9 \, dx+\int \left (96 e^{8 x} x^5+128 e^{8 x} x^6\right ) \, dx\\ &=e^2 x^2-16 e^{1+2 x} x^3-\frac {64}{3} e^{1+3 x} x^3-8 e^{1+2 x} x^4-16 e^{1+3 x} x^4+24 e^{4 x} x^5+\frac {384}{5} e^{5 x} x^5+96 e^{6 x} x^5+\frac {384}{7} e^{7 x} x^5+48 e^{1+2 x} x^5+32 e^{1+3 x} x^5+16 e^{4 x} x^6+64 e^{5 x} x^6+96 e^{6 x} x^6+64 e^{7 x} x^6+16 e^{1+2 x} x^6+16 e^{1+3 x} x^6-128 e^{4 x} x^7-\frac {1536}{5} e^{5 x} x^7-256 e^{6 x} x^7-\frac {512}{7} e^{7 x} x^7-32 e^{1+2 x} x^7-64 e^{4 x} x^8-192 e^{5 x} x^8-192 e^{6 x} x^8-64 e^{7 x} x^8-8 e^{1+2 x} x^8+240 e^{4 x} x^9+384 e^{5 x} x^9+160 e^{6 x} x^9+96 e^{4 x} x^{10}+192 e^{5 x} x^{10}+96 e^{6 x} x^{10}-192 e^{4 x} x^{11}-\frac {768}{5} e^{5 x} x^{11}-64 e^{4 x} x^{12}-64 e^{5 x} x^{12}+56 e^{4 x} x^{13}+16 e^{4 x} x^{14}+32 \int e^{1+2 x} x^3 \, dx-32 \int \left (e^{1+4 x} x^3+e^{1+4 x} x^4\right ) \, dx+48 \int e^{1+2 x} x^2 \, dx+64 \int e^{1+3 x} x^2 \, dx+64 \int e^{1+3 x} x^3 \, dx+64 \int e^{1+2 x} x^7 \, dx-96 \int e^{4 x} x^5 \, dx+96 \int e^{8 x} x^5 \, dx-96 \int e^{1+2 x} x^5 \, dx-96 \int e^{1+3 x} x^5 \, dx-120 \int e^{4 x} x^4 \, dx+128 \int e^{8 x} x^6 \, dx-160 \int e^{1+3 x} x^4 \, dx+224 \int e^{1+2 x} x^6 \, dx-224 \int e^{4 x} x^{13} \, dx-240 \int e^{1+2 x} x^4 \, dx-\frac {1920}{7} \int e^{7 x} x^4 \, dx-384 \int e^{5 x} x^4 \, dx-384 \int e^{5 x} x^5 \, dx-384 \int e^{7 x} x^5 \, dx-480 \int e^{6 x} x^4 \, dx+512 \int e^{7 x} x^6 \, dx+512 \int e^{4 x} x^7 \, dx+512 \int e^{7 x} x^7 \, dx-576 \int e^{6 x} x^5 \, dx-728 \int e^{4 x} x^{12} \, dx+768 \int e^{4 x} x^{11} \, dx+768 \int e^{5 x} x^{11} \, dx+896 \int e^{4 x} x^6 \, dx-960 \int e^{4 x} x^9 \, dx-960 \int e^{6 x} x^9 \, dx-1440 \int e^{6 x} x^8 \, dx+1536 \int e^{5 x} x^7 \, dx+1536 \int e^{6 x} x^7 \, dx+\frac {8448}{5} \int e^{5 x} x^{10} \, dx+1792 \int e^{6 x} x^6 \, dx-1920 \int e^{5 x} x^9 \, dx+2112 \int e^{4 x} x^{10} \, dx+\frac {10752}{5} \int e^{5 x} x^6 \, dx-2160 \int e^{4 x} x^8 \, dx-3456 \int e^{5 x} x^8 \, dx\\ &=e^2 x^2+24 e^{1+2 x} x^2+\frac {64}{3} e^{1+3 x} x^2-30 e^{4 x} x^4-\frac {384}{5} e^{5 x} x^4-80 e^{6 x} x^4-\frac {1920}{49} e^{7 x} x^4-128 e^{1+2 x} x^4-\frac {208}{3} e^{1+3 x} x^4+12 e^{8 x} x^5+240 e^{4 x} x^6+\frac {12352}{25} e^{5 x} x^6+\frac {1184}{3} e^{6 x} x^6+\frac {960}{7} e^{7 x} x^6+16 e^{8 x} x^6+128 e^{1+2 x} x^6+16 e^{1+3 x} x^6-604 e^{4 x} x^8-\frac {4416}{5} e^{5 x} x^8-432 e^{6 x} x^8-64 e^{7 x} x^8-8 e^{1+2 x} x^8+624 e^{4 x} x^{10}+\frac {13248}{25} e^{5 x} x^{10}+96 e^{6 x} x^{10}-246 e^{4 x} x^{12}-64 e^{5 x} x^{12}+16 e^{4 x} x^{14}-32 \int e^{1+4 x} x^3 \, dx-32 \int e^{1+4 x} x^4 \, dx-\frac {128}{3} \int e^{1+3 x} x \, dx-48 \int e^{1+2 x} x \, dx-48 \int e^{1+2 x} x^2 \, dx-60 \int e^{8 x} x^4 \, dx-64 \int e^{1+3 x} x^2 \, dx-96 \int e^{8 x} x^5 \, dx+120 \int e^{4 x} x^3 \, dx+120 \int e^{4 x} x^4 \, dx+\frac {7680}{49} \int e^{7 x} x^3 \, dx+160 \int e^{1+3 x} x^4 \, dx+\frac {640}{3} \int e^{1+3 x} x^3 \, dx-224 \int e^{1+2 x} x^6 \, dx+240 \int e^{1+2 x} x^4 \, dx+\frac {1920}{7} \int e^{7 x} x^4 \, dx+\frac {1536}{5} \int e^{5 x} x^3 \, dx+320 \int e^{6 x} x^3 \, dx+384 \int e^{5 x} x^4 \, dx-\frac {3072}{7} \int e^{7 x} x^5 \, dx+480 \int e^{1+2 x} x^3 \, dx+480 \int e^{6 x} x^4 \, dx-512 \int e^{7 x} x^6 \, dx-672 \int e^{1+2 x} x^5 \, dx+728 \int e^{4 x} x^{12} \, dx-896 \int e^{4 x} x^6 \, dx-1344 \int e^{4 x} x^5 \, dx+1440 \int e^{6 x} x^8 \, dx-\frac {8448}{5} \int e^{5 x} x^{10} \, dx-1792 \int e^{6 x} x^5 \, dx-1792 \int e^{6 x} x^6 \, dx+1920 \int e^{6 x} x^7 \, dx-2112 \int e^{4 x} x^{10} \, dx-\frac {10752}{5} \int e^{5 x} x^6 \, dx+2160 \int e^{4 x} x^8 \, dx+2184 \int e^{4 x} x^{11} \, dx-\frac {64512}{25} \int e^{5 x} x^5 \, dx-\frac {16896}{5} \int e^{5 x} x^9 \, dx+3456 \int e^{5 x} x^8 \, dx+4320 \int e^{4 x} x^7 \, dx-5280 \int e^{4 x} x^9 \, dx+\frac {27648}{5} \int e^{5 x} x^7 \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 48, normalized size = 1.50 \begin {gather*} \left (e x-4 e^{4 x} x^3+8 e^{3 x} x^3 \left (-1+x^2\right )-4 e^{2 x} x^3 \left (-1+x^2\right )^2\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.22, size = 163, normalized size = 5.09 \begin {gather*} {\left (16 \, x^{6} e^{\left (8 \, x + 4\right )} + x^{2} e^{6} - 64 \, {\left (x^{8} - x^{6}\right )} e^{\left (7 \, x + 4\right )} + 96 \, {\left (x^{10} - 2 \, x^{8} + x^{6}\right )} e^{\left (6 \, x + 4\right )} - 64 \, {\left (x^{12} - 3 \, x^{10} + 3 \, x^{8} - x^{6}\right )} e^{\left (5 \, x + 4\right )} - 8 \, {\left (x^{4} e^{3} - 2 \, {\left (x^{14} - 4 \, x^{12} + 6 \, x^{10} - 4 \, x^{8} + x^{6}\right )} e^{2}\right )} e^{\left (4 \, x + 2\right )} + 16 \, {\left (x^{6} - x^{4}\right )} e^{\left (3 \, x + 5\right )} - 8 \, {\left (x^{8} - 2 \, x^{6} + x^{4}\right )} e^{\left (2 \, x + 5\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 150, normalized size = 4.69 \begin {gather*} 16 \, x^{6} e^{\left (8 \, x\right )} - 8 \, x^{4} e^{\left (4 \, x + 1\right )} + x^{2} e^{2} - 64 \, {\left (x^{8} - x^{6}\right )} e^{\left (7 \, x\right )} + 96 \, {\left (x^{10} - 2 \, x^{8} + x^{6}\right )} e^{\left (6 \, x\right )} - 64 \, {\left (x^{12} - 3 \, x^{10} + 3 \, x^{8} - x^{6}\right )} e^{\left (5 \, x\right )} + 16 \, {\left (x^{14} - 4 \, x^{12} + 6 \, x^{10} - 4 \, x^{8} + x^{6}\right )} e^{\left (4 \, x\right )} + 16 \, {\left (x^{6} - x^{4}\right )} e^{\left (3 \, x + 1\right )} - 8 \, {\left (x^{8} - 2 \, x^{6} + x^{4}\right )} e^{\left (2 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.17, size = 159, normalized size = 4.97
method | result | size |
risch | \(16 x^{6} {\mathrm e}^{8 x}+\left (-64 x^{8}+64 x^{6}\right ) {\mathrm e}^{7 x}+\left (96 x^{10}-192 x^{8}+96 x^{6}\right ) {\mathrm e}^{6 x}+\left (-64 x^{12}+192 x^{10}-192 x^{8}+64 x^{6}\right ) {\mathrm e}^{5 x}+\left (16 x^{14}-64 x^{12}+96 x^{10}-64 x^{8}+16 x^{6}-8 x^{4} {\mathrm e}\right ) {\mathrm e}^{4 x}+\left (16 x^{6}-16 x^{4}\right ) {\mathrm e}^{3 x +1}+\left (-8 x^{8}+16 x^{6}-8 x^{4}\right ) {\mathrm e}^{2 x +1}+x^{2} {\mathrm e}^{2}\) | \(159\) |
default | \(16 \,{\mathrm e}^{4 x} x^{14}-64 \,{\mathrm e}^{4 x} x^{12}+96 \,{\mathrm e}^{4 x} x^{10}-64 x^{8} {\mathrm e}^{4 x}+16 x^{6} {\mathrm e}^{4 x}-32 \,{\mathrm e} \left (\frac {x^{3} {\mathrm e}^{4 x}}{4}-\frac {3 x^{2} {\mathrm e}^{4 x}}{16}+\frac {3 x \,{\mathrm e}^{4 x}}{32}-\frac {3 \,{\mathrm e}^{4 x}}{128}\right )-32 \,{\mathrm e} \left (\frac {x^{4} {\mathrm e}^{4 x}}{4}-\frac {x^{3} {\mathrm e}^{4 x}}{4}+\frac {3 x^{2} {\mathrm e}^{4 x}}{16}-\frac {3 x \,{\mathrm e}^{4 x}}{32}+\frac {3 \,{\mathrm e}^{4 x}}{128}\right )+16 x^{6} {\mathrm e}^{8 x}+64 \,{\mathrm e}^{7 x} x^{6}-64 \,{\mathrm e}^{7 x} x^{8}+96 \,{\mathrm e}^{6 x} x^{6}-192 \,{\mathrm e}^{6 x} x^{8}+96 \,{\mathrm e}^{6 x} x^{10}-64 \,{\mathrm e}^{5 x} x^{12}+64 x^{6} {\mathrm e}^{5 x}-192 \,{\mathrm e}^{5 x} x^{8}+192 \,{\mathrm e}^{5 x} x^{10}+16 \,{\mathrm e} \left (-x^{4} {\mathrm e}^{3 x}+x^{6} {\mathrm e}^{3 x}\right )+16 \,{\mathrm e} \left (-\frac {{\mathrm e}^{2 x} x^{4}}{2}+x^{6} {\mathrm e}^{2 x}-\frac {x^{8} {\mathrm e}^{2 x}}{2}\right )+x^{2} {\mathrm e}^{2}\) | \(279\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 722, normalized size = 22.56 \begin {gather*} 16 \, x^{6} e^{\left (8 \, x\right )} + x^{2} e^{2} - 64 \, {\left (x^{8} - x^{6}\right )} e^{\left (7 \, x\right )} + 96 \, {\left (x^{10} - 2 \, x^{8} + x^{6}\right )} e^{\left (6 \, x\right )} - 64 \, {\left (x^{12} - 3 \, x^{10} + 3 \, x^{8} - x^{6}\right )} e^{\left (5 \, x\right )} + \frac {1}{8192} \, {\left (131072 \, x^{14} - 458752 \, x^{13} + 1490944 \, x^{12} - 4472832 \, x^{11} + 12300288 \, x^{10} - 30750720 \, x^{9} + 69189120 \, x^{8} - 138378240 \, x^{7} + 242161920 \, x^{6} - 363242880 \, x^{5} + 454053600 \, x^{4} - 454053600 \, x^{3} + 340540200 \, x^{2} - 170270100 \, x + 42567525\right )} e^{\left (4 \, x\right )} + \frac {7}{8192} \, {\left (65536 \, x^{13} - 212992 \, x^{12} + 638976 \, x^{11} - 1757184 \, x^{10} + 4392960 \, x^{9} - 9884160 \, x^{8} + 19768320 \, x^{7} - 34594560 \, x^{6} + 51891840 \, x^{5} - 64864800 \, x^{4} + 64864800 \, x^{3} - 48648600 \, x^{2} + 24324300 \, x - 6081075\right )} e^{\left (4 \, x\right )} - \frac {1}{256} \, {\left (16384 \, x^{12} - 49152 \, x^{11} + 135168 \, x^{10} - 337920 \, x^{9} + 760320 \, x^{8} - 1520640 \, x^{7} + 2661120 \, x^{6} - 3991680 \, x^{5} + 4989600 \, x^{4} - 4989600 \, x^{3} + 3742200 \, x^{2} - 1871100 \, x + 467775\right )} e^{\left (4 \, x\right )} - \frac {3}{256} \, {\left (16384 \, x^{11} - 45056 \, x^{10} + 112640 \, x^{9} - 253440 \, x^{8} + 506880 \, x^{7} - 887040 \, x^{6} + 1330560 \, x^{5} - 1663200 \, x^{4} + 1663200 \, x^{3} - 1247400 \, x^{2} + 623700 \, x - 155925\right )} e^{\left (4 \, x\right )} + \frac {3}{128} \, {\left (4096 \, x^{10} - 10240 \, x^{9} + 23040 \, x^{8} - 46080 \, x^{7} + 80640 \, x^{6} - 120960 \, x^{5} + 151200 \, x^{4} - 151200 \, x^{3} + 113400 \, x^{2} - 56700 \, x + 14175\right )} e^{\left (4 \, x\right )} + \frac {15}{128} \, {\left (2048 \, x^{9} - 4608 \, x^{8} + 9216 \, x^{7} - 16128 \, x^{6} + 24192 \, x^{5} - 30240 \, x^{4} + 30240 \, x^{3} - 22680 \, x^{2} + 11340 \, x - 2835\right )} e^{\left (4 \, x\right )} - \frac {1}{8} \, {\left (512 \, x^{8} - 1024 \, x^{7} + 1792 \, x^{6} - 2688 \, x^{5} + 3360 \, x^{4} - 3360 \, x^{3} + 2520 \, x^{2} - 1260 \, x + 315\right )} e^{\left (4 \, x\right )} - \frac {1}{8} \, {\left (1024 \, x^{7} - 1792 \, x^{6} + 2688 \, x^{5} - 3360 \, x^{4} + 3360 \, x^{3} - 2520 \, x^{2} + 1260 \, x - 315\right )} e^{\left (4 \, x\right )} + \frac {1}{16} \, {\left (256 \, x^{6} - 384 \, x^{5} + 480 \, x^{4} - 480 \, x^{3} + 360 \, x^{2} - 180 \, x + 45\right )} e^{\left (4 \, x\right )} + \frac {3}{16} \, {\left (128 \, x^{5} - 160 \, x^{4} + 160 \, x^{3} - 120 \, x^{2} + 60 \, x - 15\right )} e^{\left (4 \, x\right )} - \frac {1}{4} \, {\left (32 \, x^{4} e - 32 \, x^{3} e + 24 \, x^{2} e - 12 \, x e + 3 \, e\right )} e^{\left (4 \, x\right )} - \frac {1}{4} \, {\left (32 \, x^{3} e - 24 \, x^{2} e + 12 \, x e - 3 \, e\right )} e^{\left (4 \, x\right )} + 16 \, {\left (x^{6} e - x^{4} e\right )} e^{\left (3 \, x\right )} - 8 \, {\left (x^{8} e - 2 \, x^{6} e + x^{4} e\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.81, size = 208, normalized size = 6.50 \begin {gather*} 16\,x^6\,{\mathrm {e}}^{4\,x}+64\,x^6\,{\mathrm {e}}^{5\,x}+96\,x^6\,{\mathrm {e}}^{6\,x}-64\,x^8\,{\mathrm {e}}^{4\,x}+64\,x^6\,{\mathrm {e}}^{7\,x}-192\,x^8\,{\mathrm {e}}^{5\,x}+16\,x^6\,{\mathrm {e}}^{8\,x}-192\,x^8\,{\mathrm {e}}^{6\,x}+96\,x^{10}\,{\mathrm {e}}^{4\,x}-64\,x^8\,{\mathrm {e}}^{7\,x}+192\,x^{10}\,{\mathrm {e}}^{5\,x}+96\,x^{10}\,{\mathrm {e}}^{6\,x}-64\,x^{12}\,{\mathrm {e}}^{4\,x}-64\,x^{12}\,{\mathrm {e}}^{5\,x}+16\,x^{14}\,{\mathrm {e}}^{4\,x}+x^2\,{\mathrm {e}}^2-8\,x^4\,{\mathrm {e}}^{2\,x+1}-16\,x^4\,{\mathrm {e}}^{3\,x+1}-8\,x^4\,{\mathrm {e}}^{4\,x+1}+16\,x^6\,{\mathrm {e}}^{2\,x+1}+16\,x^6\,{\mathrm {e}}^{3\,x+1}-8\,x^8\,{\mathrm {e}}^{2\,x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.39, size = 168, normalized size = 5.25 \begin {gather*} 16 x^{6} e^{8 x} + x^{2} e^{2} + \left (- 64 x^{8} + 64 x^{6}\right ) e^{7 x} + \left (16 e x^{6} - 16 e x^{4}\right ) e^{3 x} + \left (96 x^{10} - 192 x^{8} + 96 x^{6}\right ) e^{6 x} + \left (- 8 e x^{8} + 16 e x^{6} - 8 e x^{4}\right ) e^{2 x} + \left (- 64 x^{12} + 192 x^{10} - 192 x^{8} + 64 x^{6}\right ) e^{5 x} + \left (16 x^{14} - 64 x^{12} + 96 x^{10} - 64 x^{8} + 16 x^{6} - 8 e x^{4}\right ) e^{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________