Optimal. Leaf size=28 \[ \frac {\left (\frac {17}{3}-e^x\right ) x}{-e^{5 \left (-\frac {1}{10}-x\right )}+x} \]
________________________________________________________________________________________
Rubi [F] time = 2.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1}{2} (-1-10 x)} (-17-85 x)+e^x \left (-3 x^2+e^{\frac {1}{2} (-1-10 x)} (3+18 x)\right )}{3 e^{-1-10 x}-6 e^{\frac {1}{2} (-1-10 x)} x+3 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{2}+5 x} \left (-17+3 e^x-85 x+18 e^x x-3 e^{\frac {1}{2}+6 x} x^2\right )}{3 \left (1-e^{\frac {1}{2}+5 x} x\right )^2} \, dx\\ &=\frac {1}{3} \int \frac {e^{\frac {1}{2}+5 x} \left (-17+3 e^x-85 x+18 e^x x-3 e^{\frac {1}{2}+6 x} x^2\right )}{\left (1-e^{\frac {1}{2}+5 x} x\right )^2} \, dx\\ &=\frac {1}{3} \int \left (\frac {e^{\frac {1}{2}+5 x} \left (-17+3 e^x\right ) (1+5 x)}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2}-\frac {3 e^{\frac {1}{2}+6 x} x}{-1+e^{\frac {1}{2}+5 x} x}\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^{\frac {1}{2}+5 x} \left (-17+3 e^x\right ) (1+5 x)}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2} \, dx-\int \frac {e^{\frac {1}{2}+6 x} x}{-1+e^{\frac {1}{2}+5 x} x} \, dx\\ &=\frac {1}{3} \int \left (\frac {e^{\frac {1}{2}+5 x} \left (-17+3 e^x\right )}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2}+\frac {5 e^{\frac {1}{2}+5 x} \left (-17+3 e^x\right ) x}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2}\right ) \, dx-\int \frac {e^{\frac {1}{2}+6 x} x}{-1+e^{\frac {1}{2}+5 x} x} \, dx\\ &=\frac {1}{3} \int \frac {e^{\frac {1}{2}+5 x} \left (-17+3 e^x\right )}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2} \, dx+\frac {5}{3} \int \frac {e^{\frac {1}{2}+5 x} \left (-17+3 e^x\right ) x}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2} \, dx-\int \frac {e^{\frac {1}{2}+6 x} x}{-1+e^{\frac {1}{2}+5 x} x} \, dx\\ &=\frac {1}{3} \int \left (-\frac {17 e^{\frac {1}{2}+5 x}}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2}+\frac {3 e^{\frac {1}{2}+6 x}}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2}\right ) \, dx+\frac {5}{3} \int \left (-\frac {17 e^{\frac {1}{2}+5 x} x}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2}+\frac {3 e^{\frac {1}{2}+6 x} x}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2}\right ) \, dx-\int \frac {e^{\frac {1}{2}+6 x} x}{-1+e^{\frac {1}{2}+5 x} x} \, dx\\ &=5 \int \frac {e^{\frac {1}{2}+6 x} x}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2} \, dx-\frac {17}{3} \int \frac {e^{\frac {1}{2}+5 x}}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2} \, dx-\frac {85}{3} \int \frac {e^{\frac {1}{2}+5 x} x}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2} \, dx+\int \frac {e^{\frac {1}{2}+6 x}}{\left (-1+e^{\frac {1}{2}+5 x} x\right )^2} \, dx-\int \frac {e^{\frac {1}{2}+6 x} x}{-1+e^{\frac {1}{2}+5 x} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.07, size = 32, normalized size = 1.14 \begin {gather*} -e^x-\frac {-17+3 e^x}{3 \left (-1+e^{\frac {1}{2}+5 x} x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 25, normalized size = 0.89 \begin {gather*} -\frac {3 \, x e^{\left (6 \, x + \frac {1}{2}\right )} - 17}{3 \, {\left (x e^{\left (5 \, x + \frac {1}{2}\right )} - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {3 \, {\left (x^{2} - {\left (6 \, x + 1\right )} e^{\left (-5 \, x - \frac {1}{2}\right )}\right )} e^{x} + 17 \, {\left (5 \, x + 1\right )} e^{\left (-5 \, x - \frac {1}{2}\right )}}{3 \, {\left (x^{2} - 2 \, x e^{\left (-5 \, x - \frac {1}{2}\right )} + e^{\left (-10 \, x - 1\right )}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 28, normalized size = 1.00
method | result | size |
risch | \(-{\mathrm e}^{x}+\frac {{\mathrm e}^{-\frac {1}{2}} \left (3 \,{\mathrm e}^{x}-17\right )}{-3 x \,{\mathrm e}^{5 x}+3 \,{\mathrm e}^{-\frac {1}{2}}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.78, size = 26, normalized size = 0.93 \begin {gather*} -\frac {3\,x\,{\mathrm {e}}^{6\,x}\,\sqrt {\mathrm {e}}-17}{3\,\left (x\,{\mathrm {e}}^{5\,x}\,\sqrt {\mathrm {e}}-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________