Optimal. Leaf size=22 \[ \left (-1+e^{2 x} x \log (x)\right ) \left (3+x+\log \left (\frac {\log (4)}{2}\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.13, antiderivative size = 58, normalized size of antiderivative = 2.64, number of steps used = 10, number of rules used = 4, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {2176, 2194, 2196, 2554} \begin {gather*} e^{2 x} x^2 \log (x)-x+3 e^{2 x} x \log (x)-\frac {1}{2} e^{2 x} \log (\log (2)) \log (x)+\frac {1}{2} e^{2 x} (2 x+1) \log (\log (2)) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x+\log (\log (2)) \int \left (e^{2 x}+e^{2 x} (1+2 x) \log (x)\right ) \, dx+\int e^{2 x} (3+x) \, dx+\int e^{2 x} \left (3+8 x+2 x^2\right ) \log (x) \, dx\\ &=-x+\frac {1}{2} e^{2 x} (3+x)+3 e^{2 x} x \log (x)+e^{2 x} x^2 \log (x)-\frac {1}{2} \int e^{2 x} \, dx+\log (\log (2)) \int e^{2 x} \, dx+\log (\log (2)) \int e^{2 x} (1+2 x) \log (x) \, dx-\int e^{2 x} (3+x) \, dx\\ &=-\frac {e^{2 x}}{4}-x+3 e^{2 x} x \log (x)+e^{2 x} x^2 \log (x)+\frac {1}{2} e^{2 x} \log (\log (2))-\frac {1}{2} e^{2 x} \log (x) \log (\log (2))+\frac {1}{2} e^{2 x} (1+2 x) \log (x) \log (\log (2))+\frac {1}{2} \int e^{2 x} \, dx-\log (\log (2)) \int e^{2 x} \, dx\\ &=-x+3 e^{2 x} x \log (x)+e^{2 x} x^2 \log (x)-\frac {1}{2} e^{2 x} \log (x) \log (\log (2))+\frac {1}{2} e^{2 x} (1+2 x) \log (x) \log (\log (2))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 18, normalized size = 0.82 \begin {gather*} x \left (-1+e^{2 x} \log (x) (3+x+\log (\log (2)))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 29, normalized size = 1.32 \begin {gather*} x e^{\left (2 \, x\right )} \log \relax (x) \log \left (\log \relax (2)\right ) + {\left (x^{2} + 3 \, x\right )} e^{\left (2 \, x\right )} \log \relax (x) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 57, normalized size = 2.59 \begin {gather*} x e^{\left (2 \, x\right )} \log \relax (x) \log \left (\log \relax (2)\right ) + {\left (x^{2} + 3 \, x\right )} e^{\left (2 \, x\right )} \log \relax (x) + \frac {1}{4} \, {\left (2 \, x + 5\right )} e^{\left (2 \, x\right )} - \frac {1}{4} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} - x - \frac {3}{2} \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 28, normalized size = 1.27
method | result | size |
norman | \(x^{2} {\mathrm e}^{2 x} \ln \relax (x )+\left (\ln \left (\ln \relax (2)\right )+3\right ) x \,{\mathrm e}^{2 x} \ln \relax (x )-x\) | \(28\) |
default | \(-x +\ln \relax (x ) {\mathrm e}^{2 x} \ln \left (\ln \relax (2)\right ) x +x^{2} {\mathrm e}^{2 x} \ln \relax (x )+3 x \,{\mathrm e}^{2 x} \ln \relax (x )\) | \(35\) |
risch | \(-x +\ln \relax (x ) {\mathrm e}^{2 x} \ln \left (\ln \relax (2)\right ) x +x^{2} {\mathrm e}^{2 x} \ln \relax (x )+3 x \,{\mathrm e}^{2 x} \ln \relax (x )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 57, normalized size = 2.59 \begin {gather*} x e^{\left (2 \, x\right )} \log \relax (x) \log \left (\log \relax (2)\right ) + {\left (x^{2} + 3 \, x\right )} e^{\left (2 \, x\right )} \log \relax (x) - \frac {1}{4} \, {\left (2 \, x + 5\right )} e^{\left (2 \, x\right )} + \frac {1}{4} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} - x + \frac {3}{2} \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.37, size = 27, normalized size = 1.23 \begin {gather*} x\,\left ({\mathrm {e}}^{2\,x}\,\ln \relax (x)\,\left (\ln \left (\ln \relax (2)\right )+3\right )-1\right )+x^2\,{\mathrm {e}}^{2\,x}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 29, normalized size = 1.32 \begin {gather*} - x + \left (x^{2} \log {\relax (x )} + x \log {\relax (x )} \log {\left (\log {\relax (2 )} \right )} + 3 x \log {\relax (x )}\right ) e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________